锘??xml version="1.0" encoding="utf-8" standalone="yes"?>亚洲αv在线精品糸列,中文字幕亚洲天堂,亚洲av成本人无码网站http://m.tkk7.com/zellux/category/24281.html鐩茬洰銆佸娉涖佹誕韜佺殑瀛︿範絎旇 | 閮藉ぇ浜屼簡錛屾誨緱瀛︾偣浠涔堜簡銆傘傘?/description>zh-cnSun, 18 Nov 2007 22:15:15 GMTSun, 18 Nov 2007 22:15:15 GMT60Exponentiating by squaring http://m.tkk7.com/zellux/archive/2007/11/18/161322.htmlZelluXZelluXSat, 17 Nov 2007 16:56:00 GMThttp://m.tkk7.com/zellux/archive/2007/11/18/161322.htmlhttp://m.tkk7.com/zellux/comments/161322.htmlhttp://m.tkk7.com/zellux/archive/2007/11/18/161322.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/161322.htmlhttp://m.tkk7.com/zellux/services/trackbacks/161322.html

Exponentiating by squaring is an algorithm used for the fast computation of large integer powers of a number. It is also known as the square-and-multiply algorithm or binary exponentiation. In additive groups the appropriate name is double-and-add algorithm. It implicitly uses the binary expansion of the exponent. It is of quite general use, for example in modular arithmetic.



ZelluX 2007-11-18 00:56 鍙戣〃璇勮
]]>
鎷跨硸鏋滅殑鍗氬紙闂http://m.tkk7.com/zellux/archive/2007/10/16/153205.htmlZelluXZelluXTue, 16 Oct 2007 03:30:00 GMThttp://m.tkk7.com/zellux/archive/2007/10/16/153205.htmlhttp://m.tkk7.com/zellux/comments/153205.htmlhttp://m.tkk7.com/zellux/archive/2007/10/16/153205.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/153205.htmlhttp://m.tkk7.com/zellux/services/trackbacks/153205.html http://www.math.ucla.edu/~tom/Game_Theory/comb.pdf


鍙戜俊浜? flyskyf (flysky), 淇″尯: Algorithm
鏍? 棰? 鎷跨硸鏋滈棶棰?br /> 鍙戜俊绔? 姘存湪紺懼尯 (Mon Oct 15 19:07:51 2007), 绔欏唴

鐜版湁4鍫嗙硸鏋?鍒嗗埆涓?,2,4,8
鐢蹭箼涓や漢鍒嗗埆浠庝腑鎷跨硸鏋?br />
瑙勫垯:
1 姣忎漢鍙互浠庢煇涓鍫嗕腑鎷夸換鎰忓涓?br /> 2 鐢蹭箼涓や漢浜ゆ浛鎷?br /> 3 璋佹嬁鍒版渶鍚庝竴涓硸鏋滄垨鏈鍚庡嚑涓硸鏋滅畻璧?

璇烽棶璋佹湁蹇呰儨鎶婃彙?鎬庢牱瀹炵幇?


鍙戜俊浜? meeme (綾抽福), 淇″尯: Algorithm
鏍? 棰? Re: 鎷跨硸鏋滈棶棰?br /> 鍙戜俊绔? 姘存湪紺懼尯 (Mon Oct 15 19:26:32 2007), 绔欏唴

杞垚浜岃繘鍒?br />
1   =0001
2   =0010
4   =0100
8-1 =0111   +
-----------
     0222
榪欐牱姣忎釜浣嶄笂閮芥湁涓や釜1銆?br /> 姣斿涓綅涓婏紝1鍜?鍦ㄤ釜浣嶄笂閮芥湁涓涓?
瀵規柟涓嶅彲鑳藉悓鏃舵妸榪欎袱涓?鎷胯蛋銆傛墍浠ュ鏂規槸鎷夸笉瀹岀殑銆?br /> 瀵規柟鎷垮畬涔嬪悗錛岃嚜宸卞啀鎷胯嫢騫蹭釜璋冩暣鎴愯繖縐嶇姸鎬併?br />
涓棿搴旇鏈変笉灝戣瘉鏄?..




ZelluX 2007-10-16 11:30 鍙戣〃璇勮
]]>
Ferrers鍥懼儚 http://m.tkk7.com/zellux/archive/2007/10/16/153197.htmlZelluXZelluXTue, 16 Oct 2007 03:19:00 GMThttp://m.tkk7.com/zellux/archive/2007/10/16/153197.htmlhttp://m.tkk7.com/zellux/comments/153197.htmlhttp://m.tkk7.com/zellux/archive/2007/10/16/153197.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/153197.htmlhttp://m.tkk7.com/zellux/services/trackbacks/153197.html
Ferrers鍥懼儚 

    涓涓粠涓婅屼笅鐨刵灞傛牸瀛愶紝mi 涓虹i灞傜殑鏍煎瓙鏁幫紝褰搈i>=mi+1(i=1,2,...,n-1) 錛屽嵆涓婂眰鐨勬牸瀛愭暟涓嶅皯浜庝笅灞傜殑鏍煎瓙鏁版椂錛岀О涔嬩負Ferrers鍥懼儚錛屽鍥?2-6-2)紺恒?nbsp;

        

                                 鍥?nbsp;  (2-6-2)

    Ferrers鍥懼儚鍏鋒湁濡備笅鎬ц川錛?nbsp;

    1.姣忎竴灞傝嚦灝戞湁涓涓牸瀛愩?nbsp;

    2.絎竴琛屼笌絎竴鍒椾簰鎹紝絎簩琛屼簬絎簩鍒椾簰鎹紝…錛屽嵆鍥?2-6-3)緇曡櫄綰胯醬鏃嬭漿鎵寰楃殑鍥句粛鐒舵槸Ferrers鍥懼儚銆備袱涓狥errers 鍥懼儚縐頒負涓瀵瑰叡杞殑Ferrers鍥懼儚銆?nbsp;

    鍒╃敤Ferrers鍥懼儚鍙緱鍏充簬鏁存暟鎷嗗垎鐨勫崄鍒嗘湁瓚g殑緇撴灉銆?nbsp;

    (a)鏁存暟n鎷嗗垎鎴恔涓暟鐨勫拰鐨勬媶鍒嗘暟錛屽拰鏁皀鎷嗗垎鎴愪釜鏁扮殑鍜岀殑鎷嗗垎鏁扮浉絳夈?nbsp;

    鍥犳暣鏁皀鎷嗗垎鎴恔涓暟鐨勫拰鐨勬媶鍒嗗彲鐢ㄤ竴k琛岀殑鍥懼儚琛ㄧず銆傛墍寰楃殑Ferrers鍥懼儚鐨勫叡杞浘鍍忔渶涓婇潰涓琛屾湁k涓牸瀛愩備緥濡傦細 

      

鍥?nbsp;  (2-6-3)      

    (b)鏁存暟n鎷嗗垎鎴愭渶澶氫笉瓚呰繃m涓暟鐨勫拰鐨勬媶鍒嗘暟錛屽拰n鎷嗗垎鎴愭渶澶т笉瓚呰繃m鐨勬媶鍒嗘暟鐩哥瓑銆? 鐞嗙敱鍜?a)鐩哥被浼箋?nbsp;

    鍥犳錛屾媶鍒嗘垚鏈澶氫笉瓚呰繃m涓暟鐨勫拰鐨勬媶鍒嗘暟鐨勬瘝鍑芥暟鏄?nbsp;

       

    鎷嗗垎鎴愭渶澶氫笉瓚呰繃m-1涓暟鐨勫拰鐨勬媶鍒嗘暟鐨勬瘝鍑芥暟鏄?nbsp;

       

    鎵浠ユ濂芥媶鍒嗘垚m涓暟鐨勫拰鐨勬媶鍒嗘暟鐨勬瘝鍑芥暟涓?nbsp;

       

    (c)鏁存暟n鎷嗗垎鎴愪簰涓嶇浉鍚岀殑鑻ュ共濂囨暟鐨勫拰鐨勭殑鎷嗗垎鏁?鍜宯鎷嗗垎鎴愯嚜鍏辮江鐨凢errers鍥懼儚鐨勬媶鍒嗘暟鐩哥瓑. 璁?nbsp;

       

鍏朵腑n1>n2>...>nk 

    鏋勯犱竴涓狥errers鍥懼儚錛屽叾絎竴琛岋紝絎竴鍒楅兘鏄痭1+1鏍鹼紝瀵瑰簲浜?n1+1錛岀浜岃錛岀浜屽垪鍚刵2+1鏍鹼紝瀵瑰簲浜?n2+1銆備互姝ょ被鎺ㄣ傜敱姝ゅ緱鍒扮殑Ferres鍥懼儚鏄叡杞殑銆傚弽榪囨潵涔熶竴鏍楓?nbsp;

    渚嬪 17=9+5+3 瀵瑰簲涓篎errers鍥懼儚涓?

       

鍥?nbsp;  (2-6-4)

       


璐瑰嫆鏂紙Ferrers錛夊浘璞?o:p>

鍋囧畾n鎷嗗垎涓簄=n1+n2+n3+……+nk錛屼笖n1>=n2>=n3>=……>=nk

鎴戜滑灝嗗畠鎺掑垪鎴愰樁姊艦錛屽乏杈圭湅榻愶紝鎴戜滑鍙互寰楀埌涓涓被浼煎掗樁姊浘鍍忥紝榪欑鍥懼儚鎴戜滑縐頒箣涓篎errers鍥懼儚錛屽瀵逛簬20=10+5+4+1錛屾垜浠湁鍥懼儚錛?/p>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

瀵逛簬Ferrers鍥懼儚錛屾垜浠緢瀹規槗鐭ラ亾浠ヤ笅涓ゆ潯鎬ц川錛?/p>

錛?錛?nbsp;     姣忓眰鑷沖皯涓涓牸瀛?o:p>

錛?錛?nbsp;     琛屽垪浜掓崲錛屾墍瀵瑰簲鐨勫浘鍍忎粛涓篎errers鍥懼儚錛屼粬搴旇涓鴻鍥懼儚鐨勫叡杞浘鍍?o:p>

   浠繪剰鐨凢errers鍥懼儚瀵瑰簲涓涓暣鏁扮殑鎷嗗垎錛岃屽彲鐢‵errers鍥懼儚鏂逛究鍦拌瘉鏄庯細

錛?錛?nbsp;     n鎷嗗垎涓簁涓暣鏁扮殑鎷嗗垎鏁幫紝涓巒鎷嗗垎鎴愭渶澶ф暟涓簁鐨勬媶鍒嗘暟鐩哥瓑

錛?錛?nbsp;     n鎷嗗垎涓烘渶澶氫笉瓚呰繃k涓暟鐨勬媶鍒嗘暟錛屼笌n鎷嗗垎鎴愭渶澶ф暟涓嶈秴榪噆鐨勬媶鍒嗘暟鐩哥瓑

錛?錛?nbsp;     n鎷嗗垎涓轟簰涓嶇浉鍚岀殑鑻ュ共濂囨暟鐨勬媶鍒嗘暟錛屼笌n鎷嗗垎鎴愬浘鍍忚嚜鍏辮江鐨勬媶鍒嗙殑鎷嗗垎鏁扮浉絳?o:p>




ZelluX 2007-10-16 11:19 鍙戣〃璇勮
]]>
Catalan 鏁?/title><link>http://m.tkk7.com/zellux/archive/2007/09/17/145952.html</link><dc:creator>ZelluX</dc:creator><author>ZelluX</author><pubDate>Mon, 17 Sep 2007 11:55:00 GMT</pubDate><guid>http://m.tkk7.com/zellux/archive/2007/09/17/145952.html</guid><wfw:comment>http://m.tkk7.com/zellux/comments/145952.html</wfw:comment><comments>http://m.tkk7.com/zellux/archive/2007/09/17/145952.html#Feedback</comments><slash:comments>2</slash:comments><wfw:commentRss>http://m.tkk7.com/zellux/comments/commentRss/145952.html</wfw:commentRss><trackback:ping>http://m.tkk7.com/zellux/services/trackbacks/145952.html</trackback:ping><description><![CDATA[<p>n涓笉鍚岀殑鐗╀綋鎸夊浐瀹氭搴忓叆鏍堬紝闅忔椂鍙互鍑烘爤錛屾眰鏈鍚庡彲鑳界殑鍑烘爤搴忓垪鐨勬繪暟銆?br /> 鍙兂鍒拌繖涓棶棰樼瓑浠蜂簬鎶妌涓猵ush鍜宯涓猵op鎿嶄綔鎺掑垪錛岃姹備換鎰忓墠鍑犱釜鎿嶄綔涓璸ush鏁伴兘涓嶈兘灝戜簬pop鏁幫紝鑷充簬榪欎釜鎺掑垪鏁版庝箞姹傚氨涓嶇煡閬撲簡銆傝鏁欎簡peter澶х墰鍚庯紝鍘熸潵榪欏氨鏄竴涓狢atalan鏁扮殑搴旂敤銆?br /> </p> <p>Wikipedia涓婄殑Catalan numbers:<br /> </p> <p>In <a title="Combinatorial mathematics" >combinatorial mathematics</a>, the <strong>Catalan numbers</strong> form a <a title="Sequence" >sequence</a> of <a title="Natural number" >natural numbers</a> that occur in various <a title="Counting problem" >counting problems</a>, often involving <a title="Recursion" >recursively</a> defined objects. They are named for the <a title="Belgium" >Belgian</a> <a title="Mathematician" >mathematician</a> <a title="Eugène Charles Catalan" >Eugène Charles Catalan</a> (1814–1894).</p> <p>The <em>n</em><sup>th</sup> Catalan number is given directly in terms of <a title="Binomial coefficient" >binomial coefficients</a> by</p> <dl> <dd><img class="tex" alt="C_n = \frac{1}{n+1}{2n\choose n} = \frac{(2n)!}{(n+1)!\,n!} \qquad\mbox{ for }n\ge 0." src="http://en.wikilib.com/images/math/3/b/d/3bd4ac77a4af3f894d8e88ed7e1ba418.png" /></dd></dl> <p>The first Catalan numbers (sequence <a class="extiw" title="oeis:A000108" >A000108</a> in <a title="On-Line Encyclopedia of Integer Sequences" >OEIS</a>) for <em>n</em> = 0, 1, 2, 3, … are</p> <dl> <dd><a title="1 (number)" >1</a>, <a title="1 (number)" >1</a>, <a title="2 (number)" >2</a>, <a class="new" title="5 (number)" >5</a>, <a title="14 (number)" >14</a>, <a title="42 (number)" >42</a>, <a title="132 (number)" >132</a>, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …</dd></dl> <h2>Properties</h2> <p>An alternative expression for <em>C</em><sub><em>n</em></sub> is</p> <dl> <dd><img class="tex" alt="C_n = {2n\choose n} - {2n\choose n-1} \quad\mbox{ for }n\ge 1." src="http://en.wikilib.com/images/math/b/c/b/bcbb18522547b930bde29e1bedc2b058.png" /></dd></dl> <p>This shows that <em>C</em><sub><em>n</em></sub> is a <a title="Natural number" >natural number</a>, which is not <em>a priori</em> obvious from the first formula given. This expression forms the basis for André's proof of the correctness of the formula (see below under <a title="" >second proof</a>).</p> <p>The Catalan numbers satisfy the <a title="Recurrence relation" >recurrence relation</a></p> <dl> <dd><img class="tex" alt="C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\sum_{i=0}^{n}C_i\,C_{n-i}\quad\mbox{for }n\ge 0." src="http://en.wikilib.com/images/math/6/2/1/6217b3c99a3243afcd5d8dbd58186822.png" /></dd></dl> <p>They also satisfy:</p> <dl> <dd><img class="tex" alt="C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\frac{2(2n+1)}{n+2}C_n," src="http://en.wikilib.com/images/math/8/a/4/8a49332e4a46b3a2c7accec81160f5e3.png" /></dd></dl> <p>which can be a more efficient way to calculate them.</p> <p>Asymptotically, the Catalan numbers grow as</p> <dl> <dd><img class="tex" alt="C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}" src="http://en.wikilib.com/images/math/3/f/8/3f838aaa56c7ec71f80454fc181fea99.png" /></dd></dl> <p>in the sense that the quotient of the <em>n</em><sup>th</sup> Catalan number and the expression on the right <a title="Limit (mathematics)" >tends towards</a> 1 for <em>n</em> → ∞. (This can be proved by using <a title="Stirling's approximation" s approximation</a> for <em>n</em>!.)</p> <p> </p> <div id="tfxlxrr" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Applications in combinatorics" >edit</a>]</div> <p><a id="Applications_in_combinatorics" name="Applications_in_combinatorics"></a></p> <h2>Applications in combinatorics</h2> <p>There are many counting problems in <a title="Combinatorics" >combinatorics</a> whose solution is given by the Catalan numbers. The book <em>Enumerative Combinatorics: Volume 2</em> by combinatorialist <a title="Richard P. Stanley" >Richard P. Stanley</a> contains a set of exercises which describe 66 different interpretations of the Catalan numbers. Following are some examples, with illustrations of the case <em>C</em><sub>3</sub> = 5.</p> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <strong>Dyck words</strong> of length 2<em>n</em>. A Dyck word is a <a title="String (computer science)" >string</a> consisting of <em>n</em> X's and <em>n</em> Y's such that no initial segment of the string has more Y's than X's (see also <a title="Dyck language" >Dyck language</a>). For example, the following are the Dyck words of length 6:</li> </ul> <div id="fljfnff" class="center"><big>XXXYYY     XYXXYY     XYXYXY     XXYYXY     XXYXYY.</big></div> <ul> <li>Re-interpreting the symbol X as an open <a title="Parenthesis" >parenthesis</a> and Y as a close parenthesis, <em>C</em><sub><em>n</em></sub> counts the number of expressions containing <em>n</em> pairs of parentheses which are correctly matched:</li> </ul> <div id="tbxprbz" class="center"><big>((()))     ()(())     ()()()     (())()     (()())</big></div> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of different ways <em>n</em> + 1 factors can be completely <a title="Bracket" >parenthesized</a> (or the number of ways of <a title="Associativity" >associating</a> <em>n</em> applications of a <a title="Binary operator" >binary operator</a>). For <em>n</em> = 3 for example, we have the following five different parenthesizations of four factors:</li> </ul> <div id="blprbjp" class="center"><img class="tex" alt="((ab)c)d \quad (a(bc))d \quad(ab)(cd) \quad a((bc)d) \quad a(b(cd))" src="http://en.wikilib.com/images/math/0/f/9/0f95f511173c52ef07ab865ac7bc9b3f.png" /></div> <ul> <li>Successive applications of a binary operator can be represented in terms of a <a title="Binary tree" >binary tree</a>. It follows that <em>C</em><sub><em>n</em></sub> is the number of rooted ordered binary <a title="Tree (graph theory)" >trees</a> with <em>n</em> + 1 leaves:</li> </ul> <div id="hzlnpdl" class="center"> <div id="ffbdfpv" class="floatnone"><span><a class="image" title="" ><img height="92" alt="" src="http://en.wikilib.com/images/0/01/Catalan_number_binary_tree_example.png" width="496" longdesc="/wiki/Image:Catalan_number_binary_tree_example.png" /></a></span></div> </div> <p>If the leaves are labelled, we have the <a title="" >quadruple factorial</a> numbers.</p> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of non-isomorphic full binary trees with <em>n</em> vertices that have children, usually called internal vertices or branches. (A rooted binary tree is <em>full</em> if every vertex has either two children or no children.)</li> </ul> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <strong>monotonic paths</strong> along the edges of a grid with <em>n</em> × <em>n</em> square cells, which do not cross the diagonal. A monotonic path is one which starts in the lower left corner, finishes in the upper right corner, and consists entirely of edges pointing rightwards or upwards. Counting such paths is equivalent to counting Dyck words: X stands for "move right" and Y stands for "move up". The following diagrams show the case <em>n</em> = 4:</li> </ul> <div id="lvpbdlj" class="center"> <div id="dnhjdbf" class="floatnone"><span><a class="new" title="Image:Catalan number 4x4 grid example.svg" >Image:Catalan number 4x4 grid example.svg</a></span></div> </div> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of different ways a <a title="Convex polygon" >convex polygon</a> with <em>n</em> + 2 sides can be cut into <a title="Triangle (geometry)" >triangles</a> by connecting vertices with <a title="Straight line" >straight lines</a>. The following hexagons illustrate the case <em>n</em> = 4:</li> </ul> <div id="zzbvnlt" class="center"> <div id="zjnpjzf" class="floatnone"><span>Error creating thumbnail:</span></div> </div> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <a title="Stack" >stack</a>-sortable <a title="Permutation" >permutations</a> of {1, ..., <em>n</em>}. A permutation <em>w</em> is called <strong>stack-sortable</strong> if <em>S</em>(<em>w</em>) = (1, ..., <em>n</em>), where <em>S</em>(<em>w</em>) is defined recursively as follows: write <em>w</em> = <em>unv</em> where <em>n</em> is the largest element in <em>w</em> and <em>u</em> and <em>v</em> are shorter sequences, and set <em>S</em>(<em>w</em>) = <em>S</em>(<em>u</em>)<em>S</em>(<em>v</em>)<em>n</em>, with <em>S</em> being the identity for one-element sequences.</li> </ul> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <a title="Noncrossing partition" >noncrossing partitions</a> of the set { 1, ..., <em>n</em> }. <em>A fortiori</em>, <em>C</em><sub><em>n</em></sub> never exceeds the <em>n</em>th <a title="Bell numbers" >Bell number</a>. <em>C</em><sub><em>n</em></sub> is also the number of noncrossing partitions of the set { 1, ..., 2<em>n</em> } in which every block is of size 2. The conjunction of these two facts may be used in a proof by <a title="Mathematical induction" >mathematical induction</a> that all of the <em>free</em> <a title="Cumulant" >cumulants</a> of degree more than 2 of the <a title="Wigner semicircle law" >Wigner semicircle law</a> are zero. This law is important in <a title="Free probability" >free probability</a> theory and the theory of <a title="Random matrices" >random matrices</a>.</li> </ul> <p> </p> <div id="zrvnrxv" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Proof of the formula" >edit</a>]</div> <p><a id="Proof_of_the_formula" name="Proof_of_the_formula"></a></p> <h2>Proof of the formula</h2> <p>There are several ways of explaining why the formula</p> <dl> <dd><img class="tex" alt="C_n = \frac{1}{n+1}{2n\choose n}" src="http://en.wikilib.com/images/math/2/f/7/2f7536241ecfa219d69ce879aee0b690.png" /></dd></dl> <p>solves the combinatorial problems listed above. The first proof below uses a <a title="Generating function" >generating function</a>. The second and third proofs are examples of <a title="Bijective proof" >bijective proofs</a>; they involve literally counting a collection of some kind of object to arrive at the correct formula.</p> <p> </p> <div id="xhztvvr" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: First proof" >edit</a>]</div> <p><a id="First_proof" name="First_proof"></a></p> <h3>First proof</h3> <p>We start with the observation that several of the combinatorial problems listed above can easily be seen to satisfy the <a title="Recurrence relation" >recurrence relation</a></p> <dl> <dd><img class="tex" alt="C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\sum_{i=0}^{n}C_i\,C_{n-i}\quad\mbox{for }n\ge 0." src="http://en.wikilib.com/images/math/6/2/1/6217b3c99a3243afcd5d8dbd58186822.png" /></dd></dl> <p>For example, every Dyck word <em>w</em> of length ≥ 2 can be written in a unique way in the form</p> <dl> <dd><em>w</em> = X<em>w</em><sub>1</sub>Y<em>w</em><sub>2</sub></dd></dl> <p>with (possibly empty) Dyck words <em>w</em><sub>1</sub> and <em>w</em><sub>2</sub>.</p> <p>The <a title="Generating function" >generating function</a> for the Catalan numbers is defined by</p> <dl> <dd><img class="tex" alt="c(x)=\sum_{n=0}^\infty C_n x^n." src="http://en.wikilib.com/images/math/0/9/9/099acd90b5a02e418266e228dce42baa.png" /></dd></dl> <p>As explained in the article titled <a title="Cauchy product" >Cauchy product</a>, the sum on the right side of the above recurrence relation is the coefficient of <em>x</em><sup><em>n</em></sup> in the product</p> <dl> <dd><img class="tex" alt="\left(\sum_{i=0}^\infty C_i x^i\right)^2." src="http://en.wikilib.com/images/math/0/9/b/09b5ee7eef383a2195ea39fe80ad6326.png" /></dd></dl> <p>Therefore</p> <dl> <dd><img class="tex" alt="\left(\sum_{i=0}^\infty C_i x^i\right)^2 = \sum_{n=0}^\infty C_{n+1} x^n." src="http://en.wikilib.com/images/math/7/e/d/7edde9913f5f6539332dc91d07a0f06a.png" /></dd></dl> <p>Multiplying both sides by <em>x</em>, we get</p> <dl> <dd><img class="tex" alt="x\left(\sum_{i=0}^\infty C_i x^i\right)^2 = \sum_{n=0}^\infty C_{n+1} x^{n+1} = \sum_{n=1}^\infty C_n x^n = -1 + \sum_{n=0}^\infty C_n x^n." src="http://en.wikilib.com/images/math/6/d/7/6d772a87129eaeaac18cb5593c5f4744.png" /></dd></dl> <p>So we have</p> <dl> <dd><img class="tex" alt="c(x)=1+xc(x)^2,\," src="http://en.wikilib.com/images/math/3/e/9/3e94115a8614394d2173f5e236666409.png" /></dd></dl> <p>and hence</p> <dl> <dd><img class="tex" alt="c(x) = \frac{1-\sqrt{1-4x}}{2x}." src="http://en.wikilib.com/images/math/5/5/f/55f71088f2677c2c0ca9fc2803bb381a.png" /></dd></dl> <p>The square root term can be expanded as a power series using the identity</p> <dl> <dd><img class="tex" alt="\sqrt{1+y} = 1 - 2\sum_{n=1}^\infty {2n-2 \choose n-1} \left(\frac{-1}{4}\right)^n \frac{y^n}{n} ," src="http://en.wikilib.com/images/math/f/9/3/f93a1c2e37d78a6ccc19a093f32288d0.png" /></dd></dl> <p>which can be proved, for example, by the <a title="Binomial theorem" >binomial theorem</a>, (or else directly by considering repeated derivatives of <img class="tex" alt="\sqrt{1+y}" src="http://en.wikilib.com/images/math/3/5/9/359cde1ccf64c847be8a3a89003911ae.png" />) together with judicious juggling of factorials. Substituting this into the above expression for <em>c</em>(<em>x</em>) produces, after further manipulation,</p> <dl> <dd><img class="tex" alt="c(x) = \sum_{n=0}^\infty {2n \choose n} \frac{x^n}{n+1.}" src="http://en.wikilib.com/images/math/9/7/0/970cda73b92cc5fcd73ea50e1f1a4150.png" /></dd></dl> <p>Equating coefficients yields the desired formula for <em>C</em><sub><em>n</em></sub>.</p> <p> </p> <div id="zjfxbzn" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Second proof" >edit</a>]</div> <p><a id="Second_proof" name="Second_proof"></a></p> <h3>Second proof</h3> <p>This proof depends on a trick due to D. André, which is now more generally known as the <a class="new" title="Reflection principle (combinatorics)" >reflection principle</a> (not to be confused with the <a class="new" title="Schwarz reflection theorem" >Schwarz reflection theorem</a> in <a title="Complex analysis" >complex analysis</a>). It is most easily expressed in terms of the "monotonic paths which do not cross the diagonal" problem (see <a title="" >above</a>).</p> <div id="nzbnxfv" class="thumb tright"> <div style="width: 308px"><a class="internal" title="Figure 1. The green portion of the path is being flipped." ><img height="164" alt="Figure 1. The green portion of the path is being flipped." src="http://en.wikilib.com/images/3/3f/Catalan_number_reflection_example.png" width="306" longdesc="/wiki/Image:Catalan_number_reflection_example.png" /></a> <div id="hfjlnvj" class="thumbcaption">Figure 1. The green portion of the path is being flipped.</div> </div> </div> <p>Suppose we are given a monotonic path in an <em>n</em> × <em>n</em> grid that <em>does</em> cross the diagonal. Find the first edge in the path that lies above the diagonal, and <em>flip</em> the portion of the path occurring after that edge, along a line parallel to the diagonal. (In terms of Dyck words, we are starting with a sequence of <em>n</em> X's and <em>n</em> Y's which is <em>not</em> a Dyck word, and exchanging all X's with Y's after the first Y that violates the Dyck condition.) The resulting path is a monotonic path in an (<em>n</em> − 1) × (<em>n</em> + 1) grid. Figure 1 illustrates this procedure; the green portion of the path is the portion being flipped.</p> <p>Since every monotonic path in the (<em>n</em> − 1) × (<em>n</em> + 1) grid must cross the diagonal at some point, every such path can be obtained in this fashion in precisely one way. The number of these paths is equal to</p> <dl> <dd><img class="tex" alt="{2n\choose n-1}" src="http://en.wikilib.com/images/math/1/b/b/1bbba9502fa1bee3260b5a4d899ca8af.png" />.</dd></dl> <p>Therefore, to calculate the number of monotonic <em>n</em> × <em>n</em> paths which do <em>not</em> cross the diagonal, we need to subtract this from the <em>total</em> number of monotonic <em>n</em> × <em>n</em> paths, so we finally obtain</p> <dl> <dd><img class="tex" alt="{2n\choose n}-{2n\choose n-1}" src="http://en.wikilib.com/images/math/5/8/d/58d2e21c221b2e3b3876c4331600f7ca.png" /></dd></dl> <p>which is the <em>n</em>th Catalan number <em>C</em><sub><em>n</em></sub>.</p> <p> </p> <div id="ffztlbr" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Third proof" >edit</a>]</div> <p><a id="Third_proof" name="Third_proof"></a></p> <h3>Third proof</h3> <p>The following bijective proof, while being more involved than the previous one, provides a more natural explanation for the term <em>n</em> + 1 appearing in the denominator of the formula for <em>C</em><sub><em>n</em></sub>.</p> <div id="bjlnhfd" class="thumb tright"> <div style="width: 146px"><a class="internal" title="Figure 2. A path with exceedance 5." ><img height="143" alt="Figure 2. A path with exceedance 5." src="http://en.wikilib.com/images/a/aa/Catalan_number_exceedance_example.png" width="144" longdesc="/wiki/Image:Catalan_number_exceedance_example.png" /></a> <div id="hxbtxdl" class="thumbcaption">Figure 2. A path with exceedance 5.</div> </div> </div> <p>Suppose we are given a monotonic path, which may happen to cross the diagonal. The <strong>exceedance</strong> of the path is defined to be the number of pairs of edges which lie <em>above</em> the diagonal. For example, in Figure 2, the edges lying above the diagonal are marked in red, so the exceedance of the path is 5.</p> <p>Now, if we are given a monotonic path whose exceedance is not zero, then we may apply the following algorithm to construct a new path whose exceedance is one less than the one we started with.</p> <ul> <li>Starting from the bottom left, follow the path until it first travels above the diagonal.</li> <li>Continue to follow the path until it <em>touches</em> the diagonal again. Denote by <em>X</em> the first such edge that is reached.</li> <li>Swap the portion of the path occurring before <em>X</em> with the portion occurring after <em>X</em>.</li> </ul> <p>The following example should make this clearer. In Figure 3, the black circle indicates the point where the path first crosses the diagonal. The black edge is <em>X</em>, and we swap the red portion with the green portion to make a new path, shown in the second diagram.</p> <div id="zpjvnnj" class="center"> <div id="jrbplbz" class="thumb tnone"> <div style="width: 343px"><a class="internal" title="Figure 3. The green and red portions are being exchanged." ><img height="156" alt="Figure 3. The green and red portions are being exchanged." src="http://en.wikilib.com/images/1/13/Catalan_number_swapping_example.png" width="341" longdesc="/wiki/Image:Catalan_number_swapping_example.png" /></a> <div id="drlpjpv" class="thumbcaption">Figure 3. The green and red portions are being exchanged.</div> </div> </div> </div> <p>Notice that the exceedance has dropped from three to two. In fact, the algorithm will cause the exceedance to decrease by one, for any path that we feed it.</p> <div id="jxblftr" class="thumb tright"> <div style="width: 311px"><a class="internal" title="Figure 4. All monotonic paths in a 3×3 grid, illustrating the exceedance-decreasing algorithm." ><img height="338" alt="Figure 4. All monotonic paths in a 3×3 grid, illustrating the exceedance-decreasing algorithm." src="http://en.wikilib.com/images/6/65/Catalan_number_algorithm_table.png" width="309" longdesc="/wiki/Image:Catalan_number_algorithm_table.png" /></a> <div id="jhbddbb" class="thumbcaption">Figure 4. All monotonic paths in a 3×3 grid, illustrating the exceedance-decreasing algorithm.</div> </div> </div> <p>It is also not difficult to see that this process is <em>reversible</em>: given any path <em>P</em> whose exceedance is less than <em>n</em>, there is exactly one path which yields <em>P</em> when the algorithm is applied to it.</p> <p>This implies that the number of paths of exceedance <em>n</em> is equal to the number of paths of exceedance <em>n</em> − 1, which is equal to the number of paths of exceedance <em>n</em> − 2, and so on, down to zero. In other words, we have split up the set of <em>all</em> monotonic paths into <em>n</em> + 1 equally sized classes, corresponding to the possible exceedances between 0 and <em>n</em>. Since there are</p> <dl> <dd><img class="tex" alt="{2n\choose n}" src="http://en.wikilib.com/images/math/c/9/2/c92da943df73dc077dbee5514376346a.png" /></dd></dl> <p>monotonic paths, we obtain the desired formula</p> <dl> <dd><img class="tex" alt="C_n = \frac{1}{n+1}{2n\choose n}." src="http://en.wikilib.com/images/math/c/d/d/cdd0aed4c95a95711a0dbe1bf2b627c8.png" /></dd></dl> <p>Figure 4 illustrates the situation for <em>n</em> = 3. Each of the 20 possible monotonic paths appears somewhere in the table. The first column shows all paths of exceedance three, which lie entirely above the diagonal. The columns to the right show the result of successive applications of the algorithm, with the exceedance decreasing one unit at a time. Since there are five rows, <em>C</em><sub>3</sub> = 5.</p> <p> </p> <div id="jpztdtz" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Hankel matrix" >edit</a>]</div> <p><a id="Hankel_matrix" name="Hankel_matrix"></a></p> <h2>Hankel matrix</h2> <p>The <em>n</em>×<em>n</em> <a title="Hankel matrix" >Hankel matrix</a> whose (<em>i</em>, <em>j</em>) entry is the Catalan number <em>C</em><sub><em>i</em>+<em>j</em></sub> has <a title="Determinant" >determinant</a> 1, regardless of the value of <em>n</em>. For example, for <em>n</em> = 4 we have</p> <dl> <dd><img class="tex" alt="\det\begin{bmatrix}1 & 1 & 2 & 5 \\ 1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132\end{bmatrix} = 1" src="http://en.wikilib.com/images/math/b/3/4/b343632207d325a9034ca070c2ff4877.png" /></dd></dl> <p>Note that if the entries are ``shifted", namely the Catalan numbers <em>C</em><sub><em>i</em>+<em>j</em>+1</sub>, the determinant is still 1, regardless of the size of <em>n</em>. For example, for <em>n</em> = 4 we have</p> <dl> <dd><img class="tex" alt="\det\begin{bmatrix}1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132 \\ 14 & 42 & 132 & 429 \end{bmatrix} = 1" src="http://en.wikilib.com/images/math/4/7/a/47a3417c3b5431effd27921e10843596.png" />.</dd></dl> <p>The Catalan numbers is the unique sequence with this property.</p> <p> </p> <div id="ltdxbhn" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Quadruple factorial" >edit</a>]</div> <p><a id="Quadruple_factorial" name="Quadruple_factorial"></a></p> <h2>Quadruple factorial</h2> <p>The quadruple factorial is given by <img class="tex" alt="\frac{2n!}{n!}" src="http://en.wikilib.com/images/math/7/1/6/71601208bc5bcedbb64efa37fd859312.png" />, or <img class="tex" alt="\left(n+1\right)! C_n" src="http://en.wikilib.com/images/math/0/6/0/060bab7aad3b5f3d54db456ec19ec64b.png" />. This is the solution to labelled variants of the above combinatorics problems. It is entirely distinct from the <a title="Factorial" >multifactorials</a>.</p> <p> </p> <div id="djlnzxn" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: History" >edit</a>]</div> <p><a id="History" name="History"></a></p> <h2>History</h2> <p>The Catalan sequence was first described in the <a title="18th century" >18th century</a> by <a title="Leonhard Euler" >Leonhard Euler</a>, who was interested in the number of different ways of dividing a polygon into triangles. The sequence is named after <a title="Eugène Charles Catalan" >Eugène Charles Catalan</a>, who discovered the connection to parenthesized expressions. The counting trick for Dyck words was found by D. André in 1887.</p> <img src ="http://m.tkk7.com/zellux/aggbug/145952.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://m.tkk7.com/zellux/" target="_blank">ZelluX</a> 2007-09-17 19:55 <a href="http://m.tkk7.com/zellux/archive/2007/09/17/145952.html#Feedback" target="_blank" style="text-decoration:none;">鍙戣〃璇勮</a></div>]]></description></item><item><title>Functional Programming For The Rest of Ushttp://m.tkk7.com/zellux/archive/2007/08/24/139194.htmlZelluXZelluXFri, 24 Aug 2007 14:54:00 GMThttp://m.tkk7.com/zellux/archive/2007/08/24/139194.htmlhttp://m.tkk7.com/zellux/comments/139194.htmlhttp://m.tkk7.com/zellux/archive/2007/08/24/139194.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/139194.htmlhttp://m.tkk7.com/zellux/services/trackbacks/139194.html闃呰鍏ㄦ枃

ZelluX 2007-08-24 22:54 鍙戣〃璇勮
]]>
紱繪暎瀛︿範絎旇 - 緹?(1)http://m.tkk7.com/zellux/archive/2007/08/07/135088.htmlZelluXZelluXTue, 07 Aug 2007 14:31:00 GMThttp://m.tkk7.com/zellux/archive/2007/08/07/135088.htmlhttp://m.tkk7.com/zellux/comments/135088.htmlhttp://m.tkk7.com/zellux/archive/2007/08/07/135088.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/135088.htmlhttp://m.tkk7.com/zellux/services/trackbacks/135088.html緗崲銆?br>鑻鐨勫厓绱犱釜鏁頒負n錛岃M鐨勬墍鏈夌疆鎹㈢殑闆嗗悎璁頒綔Sn錛屽垯涓嶉毦寰楀嚭Sn鐨勫厓绱犱釜鏁頒負n涓厓绱犵殑鎺掑垪鏁幫紝鍗?br>| Sn | = n!

2. Sn鐨勪竴涓妸i1鍙樺埌i2錛宨2鍙樺埌i3錛?#8230;…錛宨k-1鍙樺埌ik錛宨k鍙樺埌i1錛岃屽叾浣欑殑鍏冿紙濡傛灉榪樻湁錛変笉鍙樼殑緗崲縐頒負k闃?span style="color: red; font-weight: bold;">寰幆緗崲
濡?br>(1 2 3 4 5 6)  =  (1) = (2) = ... = (6)錛岀О涓烘亽絳夌疆鎹?br> 1 2 3 4 5 6

3.鍑犱釜瀹氱悊錛?br>1) 璁緁錛実涓轟袱涓笉鐩鎬氦鐨勫驚鐜疆鎹紝鍒檉g = gf
2) 浠繪剰緗崲鍧囧彲鍞竴鍦板垎瑙f垚涓嶇浉浜ゅ驚鐜疆鎹㈢殑涔樼Н
榪欎釜瀹氱悊鍙敱鏋勯犳硶璇佸緱錛岃璇佹硶鍚屾椂涔熺粰鍑轟簡鍒嗚В涓哄驚鐜疆鎹㈢殑涔樼Н鐨勬柟娉?br>3) 浠繪剰緗崲鍧囧彲鍒嗚В涓哄鎹㈢殑涔樼Н錛堜笉鍞竴錛夛紝渚嬪
(12)(345) = (12)(35)(34) = (12)(14)(41)(35)(34)

4. 緗崲鐨勫鍋舵?br>1) 璁緁 ∈Sn錛岃瀹歠鐨勭鍙蜂負
Sgn f = ∏[ f(i) - f(j) ] / (i - j)
璨屼技灝辨槸閫嗗簭瀵規暟鐨勫鍋舵э紝濂囦負-1錛屽伓涓?
2) Sgn(fg) = (Sgn f)(Sgn g)
3) n > 1鏃訛紝Sn涓緗崲涓庡伓緗崲鐨勪釜鏁扮浉絳夛紝鍧囦負n! / 2
鍙氳繃鍒嗙涓緇勫鎹㈢Н璇佸緱



ZelluX 2007-08-07 22:31 鍙戣〃璇勮
]]>
紱繪暎瀛︿範絎旇 - 鍩烘暟錛堝娍錛?/title><link>http://m.tkk7.com/zellux/archive/2007/07/28/133040.html</link><dc:creator>ZelluX</dc:creator><author>ZelluX</author><pubDate>Sat, 28 Jul 2007 11:20:00 GMT</pubDate><guid>http://m.tkk7.com/zellux/archive/2007/07/28/133040.html</guid><wfw:comment>http://m.tkk7.com/zellux/comments/133040.html</wfw:comment><comments>http://m.tkk7.com/zellux/archive/2007/07/28/133040.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://m.tkk7.com/zellux/comments/commentRss/133040.html</wfw:commentRss><trackback:ping>http://m.tkk7.com/zellux/services/trackbacks/133040.html</trackback:ping><description><![CDATA[<p>1. 璁続, B涓轟袱涓泦鍚堬紝鑻ュ瓨鍦ㄤ粠A鍒癇鐨勫弻灝勫嚱鏁幫紝鍒欑ОA涓嶣鏄?strong style="COLOR: red">絳夊娍</strong>鐨勶紝璁頒負A鈮圔<br>N*N 鈮?N鐨勪竴縐嶈瘉鏄庯細鏋勯犲弻灝勫嚱鏁?n = 2<sup>a</sup> * (2b - 1)銆?br></p> <p>2. 璁続, B, C涓轟換鎰忕殑闆嗗悎錛屽垯<br>(1) A鈮圓<br>(2) 鑻鈮圔錛屽垯B鈮圓<br>(3) 鑻鈮圔涓擝鈮圕錛屽垯A鈮圕<br></p> <p>3. Cantor瀹氱悊<br>(1) N涓嶄笌R絳夊娍<br>(2) 璁続涓轟換鎰忕殑闆嗗悎錛屽垯A涓嶄笌P(A)絳夊娍<br></p> <p>4. 鑻ヤ竴涓泦鍚圓涓庢煇涓嚜鐒舵暟n絳夊娍錛屽垯縐癆鏄?strong style="COLOR: red">鏈夌┓闆嗗悎</strong>錛屽惁鍒欑ОA涓?span style="COLOR: red"><strong>鏃犵┓闆嗗悎</strong></span>銆?/p> <img src ="http://m.tkk7.com/zellux/aggbug/133040.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://m.tkk7.com/zellux/" target="_blank">ZelluX</a> 2007-07-28 19:20 <a href="http://m.tkk7.com/zellux/archive/2007/07/28/133040.html#Feedback" target="_blank" style="text-decoration:none;">鍙戣〃璇勮</a></div>]]></description></item><item><title>紱繪暎瀛︿範絎旇 - 鑷劧鏁?(2)http://m.tkk7.com/zellux/archive/2007/07/28/132964.htmlZelluXZelluXSat, 28 Jul 2007 08:37:00 GMThttp://m.tkk7.com/zellux/archive/2007/07/28/132964.htmlhttp://m.tkk7.com/zellux/comments/132964.htmlhttp://m.tkk7.com/zellux/archive/2007/07/28/132964.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/132964.htmlhttp://m.tkk7.com/zellux/services/trackbacks/132964.html1. 鏁板褰掔撼娉曡瘉鏄庤嚜鐒舵暟鐨勬ц川P錛?br>絎竴錛屾瀯閫?S = { n | n ∈N 鈭?P(n) }
絎簩錛岃瘉鏄嶴鏄綊綰抽泦

2. 璁続涓轟竴涓泦鍚堬紝濡傛灉A涓換浣曞厓绱犵殑鍏冪礌涔熸槸A鐨勫厓绱狅紝鍒欑ОA涓?strong style="COLOR: red">浼犻掗泦銆傛瘡涓嚜鐒舵暟閮芥槸浼犻掗泦銆?br>浠ヤ笅鍛介絳変環錛?br>(1) A鏄紶閫掗泦
(2) ∪A 鍖呭惈浜?A
(3) 瀵逛簬浠繪剰鐨剏∈A錛寉鍖呭惈浜嶢
(4) A鍖呭惈浜嶱(A)
(5) P(A)涓轟紶閫掗泦

3. 璁続涓轟竴涓泦鍚堬紝縐頒粠A*A鍒癆鐨勫嚱鏁頒負A涓婄殑浜屽厓榪愮畻銆?br>鍙?: N*N -> N錛屼笖瀵逛簬浠繪剰鐨刴, n ∈N錛?(<m, n>) = Am(n), 璁頒綔m + n錛岀О+涓篘涓婄殑鍔犳硶榪愮畻
鍙?#183;: N*N -> N錛屼笖瀵逛簬浠繪剰鐨刴, n ∈N錛?#183;(<m, n>) = Mm(n)錛岃浣渕·n錛岀О·涓篘涓婄殑涔樻硶榪愮畻銆?br>

 



ZelluX 2007-07-28 16:37 鍙戣〃璇勮
]]>
紱繪暎瀛︿範絎旇 - 鑷劧鏁?(1)http://m.tkk7.com/zellux/archive/2007/07/27/132875.htmlZelluXZelluXFri, 27 Jul 2007 11:36:00 GMThttp://m.tkk7.com/zellux/archive/2007/07/27/132875.htmlhttp://m.tkk7.com/zellux/comments/132875.htmlhttp://m.tkk7.com/zellux/archive/2007/07/27/132875.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/132875.htmlhttp://m.tkk7.com/zellux/services/trackbacks/132875.html1. Peano 緋葷粺

Peano緋葷粺鏄弧瓚充互涓嬪叕璁劇殑鏈夊簭涓夊厓緇?lt;M, F, e>錛屽叾涓璏涓轟竴涓泦鍚堬紝F涓篗鍒癕鐨勫嚱鏁幫紝e涓洪鍏冪礌銆?鏉″叕璁句負錛?/p>

(1) e ∈M
(2) M鍦‵涓嬫槸灝侀棴鐨?br>(3) e 錕?ranF 錛堟殏鏃跺彧鎵懼埌榪欎釜絎﹀彿琛ㄧず“涓嶅睘浜?#8221; 鍥э級
(4) F鏄崟灝勭殑
(5) 濡傛灉M鐨勫瓙闆咥婊¤凍 (e灞炰簬A) 涓?(A鍦‵涓嬫槸灝侀棴鐨?錛屽垯A=M
(5)縐頒負鏋佸皬鎬у叕璁?br>

2. 璁続涓轟竴涓泦鍚堬紝縐?A∪{A} 涓篈鐨?strong style="COLOR: red">鍚庣戶錛岃浣淎+, 騫剁О姹傞泦鍚堢殑鍚庣戶涓?span style="COLOR: red">鍚庣戶榪愮畻銆?br>

3. 璁続涓轟竴涓泦鍚堬紝鑻婊¤凍錛?br>(1) Ø  ∈A錛?br>(2) 鑻ュ浜庝竴鍒?a ∈A錛屽垯 a+ ∈A錛?br>鍒欑ОA鏄?strong style="COLOR: red">褰掔撼闆?/strong>銆?br>

4. 浠庡綊綰抽泦鐨勫畾涔夊彲浠ョ湅鍑猴紝Ø錛?#216;+, Ø++,... 鏄墍鏈夊綊綰抽泦鐨勫厓绱狅紝浜庢槸鍙互灝嗗畠浠畾涔夋垚鑷劧鏁?/strong>銆?br>鑷劧鏁版槸灞炰簬姣忎釜褰掔撼闆嗙殑闆嗗悎錛屽皢Ø錛?#216;+, Ø++,...鍒嗗埆璁頒負0, 1, 2, ...
璁綝={v | v鏄綊綰抽泦|錛岀О∩D涓哄叏浣撹嚜鐒舵暟闆嗗悎錛岃涓篘.
璁綨涓鴻嚜鐒舵暟闆嗗悎錛?#963;: N -> N錛屼笖σ(n) = n+, 鍒?lt;N, σ, Ø>鏄疨eano緋葷粺銆?br>榪欎釜Peano緋葷粺鐨勭(5)鏉″叕璁炬彁鍑轟簡璇佹槑鑷劧鏁版ц川鐨勪竴縐嶆柟娉曪紝鍗?span style="COLOR: red">鏁板褰掔撼娉?/strong>錛岀О姝ゅ叕璁句負鏁板褰掔撼娉曞師鐞?/strong>銆?/p>

ZelluX 2007-07-27 19:36 鍙戣〃璇勮
]]>
紱繪暎瀛︿範絎旇 - 搴忓叧緋?/title><link>http://m.tkk7.com/zellux/archive/2007/07/25/132268.html</link><dc:creator>ZelluX</dc:creator><author>ZelluX</author><pubDate>Wed, 25 Jul 2007 04:26:00 GMT</pubDate><guid>http://m.tkk7.com/zellux/archive/2007/07/25/132268.html</guid><wfw:comment>http://m.tkk7.com/zellux/comments/132268.html</wfw:comment><comments>http://m.tkk7.com/zellux/archive/2007/07/25/132268.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://m.tkk7.com/zellux/comments/commentRss/132268.html</wfw:commentRss><trackback:ping>http://m.tkk7.com/zellux/services/trackbacks/132268.html</trackback:ping><description><![CDATA[鍚勭鍙風殑瀹氫箟涓庝笂鏂囦腑鏈榪戝鐨勫畾涔夌浉鍚屻?br>1. 璁綬灞炰簬A*A錛岃嫢R鏄嚜鍙嶇殑銆佸弽瀵圭О鐨勫拰浼犻掔殑錛屽垯縐癛鏄疉涓婄殑鍋忓簭鍏崇郴銆?partial order<br>2. 縐頒竴涓潪絀洪泦鍚圓鍙婂叾A涓婄殑涓涓亸搴忓叧緋?lt;=緇勬垚鐨勬湁搴忎簩鍏冪粍(a, <=)涓轟竴涓亸搴忛泦銆俻artially ordered set, or simply poset.<br>3. 鑻?A, <=)涓轟竴涓亸搴忛泦錛岃嫢瀵逛簬涓鍒噚,y灞炰簬A錛屽鏋渪<=y鎴栬厃<=x鎴愮珛錛屽垯縐皒涓巠鏄彲姣旂殑銆?br>4. 鑻涓巠鏄彲姣旂殑錛屼笖x<y錛堝嵆x<=y涓攛!=y錛夛紝浣嗕笉瀛樺湪z灞炰簬A錛屼嬌寰梮<z<y錛屽垯縐皔瑕嗙洊x銆?br>5. 鍝堟柉鍥句綔娉曪細 Hasse diagram<br>(1) 鐪佸幓鍏崇郴鍥句腑姣忎釜欏剁偣澶勭殑鐜?br>(2) 鑻瑕嗙洊x錛屽垯灝嗕唬琛▂鐨勯《鐐規斁鍦ㄤ唬琛▁鐨勯《鐐逛箣涓婏紝騫惰繛綰匡紝鐪佸幓鏈夊悜杈圭殑綆ご銆?br>6. 鑻ュ浜庝竴鍒噚,y灞炰簬A錛寈涓巠鍧囧彲姣旓紝鍒欑О<=涓篈涓婄殑鍏ㄥ簭鍏崇郴錛屾垨綰挎у叧緋匯俵inear order<br>7. 鑻鏄弽鑷弽鐨勫拰浼犻掔殑錛屽垯縐癛涓篈涓婄殑鎷熷簭鍏崇郴錛屽父灝哛璁頒綔<銆?br>8. 鏈澶у厓 鏈灝忓厓 鏋佸ぇ鍏?鏋佸皬鍏?涓婄晫 涓嬬晫 鏈灝忎笂鐣?鏈澶т笅鐣?br>鍏跺疄榪欎簺璇嶇殑鍖哄埆鍜岄珮鏁頒腑鐨勫緢鐩歌繎錛?#8220;鏈”閽堝鑷韓闆嗗悎鐨勬墍鏈夊厓绱狅紝“鏋?#8221;閽堝鑷韓闆嗗悎鐨勯儴鍒嗗厓绱狅紝“鐣?#8221;鎸囨湁涓涓洿澶х殑鍖呭惈鑷韓闆嗗悎鐨勫弬鐓х郴涓嬬殑鎯呭喌銆?br>9. 綰挎у叧緋諱腑鐢變簬浠諱綍涓や釜鍏冪礌鍧囧彲姣旓紝鍥犳鍝堟柉鍥句腑灝卞彲浠ヨ〃紺轟負涓鏉$洿綰匡紝浠庤屽鏄撶悊瑙g嚎鎬х殑鐢辨潵銆傚張縐頒負閾撅紝鍏冪礌涓暟縐頒負閾劇殑闀垮害銆?br>10. 鑹簭鍏崇郴錛氭嫙鍏ㄥ簭闆?A, <)涓換浣曢潪絀哄瓙闆嗗潎鏈夋渶灝忓厓銆?br><br> <img src ="http://m.tkk7.com/zellux/aggbug/132268.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://m.tkk7.com/zellux/" target="_blank">ZelluX</a> 2007-07-25 12:26 <a href="http://m.tkk7.com/zellux/archive/2007/07/25/132268.html#Feedback" target="_blank" style="text-decoration:none;">鍙戣〃璇勮</a></div>]]></description></item><item><title>紱繪暎瀛︿範絎旇 - 浜屽厓鍏崇郴http://m.tkk7.com/zellux/archive/2007/07/25/132238.htmlZelluXZelluXWed, 25 Jul 2007 03:03:00 GMThttp://m.tkk7.com/zellux/archive/2007/07/25/132238.htmlhttp://m.tkk7.com/zellux/comments/132238.htmlhttp://m.tkk7.com/zellux/archive/2007/07/25/132238.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/132238.htmlhttp://m.tkk7.com/zellux/services/trackbacks/132238.html(1) 鑷弽 reflexive
瀵圭О symmetric
浼犻?transitive
(2) 鍏朵腑錛岃R灞炰簬A*A錛圓涓洪潪絀洪泦鍚堬級錛屽垯r(R) = R涓嶢涓婃亽絳夊叧緋葷殑騫訛紝s(R) = R涓嶳鐨勯嗙殑騫訛紝
t(R) = R 騫?R^2 騫?R^3 騫?..騫?R^l銆?br>(3) rs(R) = sr(R)
rt(R) = tr(R)
st(R) 灞炰簬 ts(R)


2. 絳変環鍏崇郴鍜屽垝鍒?br>(1) 璁綬灞炰簬A*A錛岃嫢R鏄嚜鍙嶇殑銆佸縐扮殑鍜屼紶閫掔殑錛屽垯縐癛涓篈涓婄殑絳変環鍏崇郴銆?br>(2) 浠x]R涓簒鐨勫叧浜嶳鐨勭瓑浠風被錛屽湪涓嶅紩璧鋒販涔辨椂鍙畝璁頒負[x]銆?br>(3) 浠ュ叧浜嶳鐨勫叏浣撲笉鍚岀殑絳変環綾諱負鍏冪礌鐨勯泦鍚堢О涓篈鍏充簬R鐨勫晢闆嗭紝璁頒綔A/R銆?br>(4) 璁続涓洪潪絀洪泦鍚堬紝鑻ュ瓨鍦ˋ鐨勪竴涓瓙闆嗘棌S婊¤凍
a. S涓笉鍖呭惈絀洪泦鍏冪礌
b. 瀵逛簬涓鍒噚,y灞炰簬S錛屼笖x,y涓嶇浉絳夛紝鍒檟涓巠涓嶇浉浜ょ殑(disjoint)
c. S涓墍鏈夐泦鍚堢殑騫朵負A
鍒欑ОS涓篈鐨勪竴涓垝鍒嗭紝S涓厓绱犵О涓哄垝鍒嗗潡銆?br>(5) 闈炵┖闆嗗悎A涓婄殑絳変環鍏崇郴涓嶢鐨勫垝鍒嗘槸涓涓瀵瑰簲鐨勩?br>(6) 絎簩綾籗tirling鏁幫紝琛ㄧず灝唍涓笉鍚岀殑鐞冩斁鍏涓浉鍚岀殑鐩掑瓙涓殑鏂規鏁幫紝鍙互鐢變笅鍒楅掑綊寮忚綆楋細
f(n, r) = r * f(n - 1, r) + f(n - 1, r - 1)
寰堝鏄撶悊瑙g殑涓涓掑綊寮忥紝鍏朵腑鍒濆鐘舵佷負
f(n, 0) = 0, f(n, 1) = 1, f(n, 2) = 2^(n-1) - 1, f(n, n - 1) = C(n, 2), f(n, n) = 1
(7) A涓婄瓑浠峰叧緋葷殑鏁伴噺鍙互閫氳繃Stiring鏁版眰鍑猴紝浠={a,b,c,d}涓轟緥
f(4,1) + f(4,2) + f(4,3) + f(4,4) = 15


ZelluX 2007-07-25 11:03 鍙戣〃璇勮
]]>
涓浜涙暟鐙妧宸?Very Easy - Hard)http://m.tkk7.com/zellux/archive/2007/07/20/131435.htmlZelluXZelluXFri, 20 Jul 2007 03:59:00 GMThttp://m.tkk7.com/zellux/archive/2007/07/20/131435.htmlhttp://m.tkk7.com/zellux/comments/131435.htmlhttp://m.tkk7.com/zellux/archive/2007/07/20/131435.html#Feedback0http://m.tkk7.com/zellux/comments/commentRss/131435.htmlhttp://m.tkk7.com/zellux/services/trackbacks/131435.htmlfrom www.BrainBashers.com
1. Intersection 妯柇錛屾父鎴忎竴寮濮嬪氨浣跨敤鐨勫父瑙佹妧宸с?/p>

Sudoku Image  Sudoku Image

2. Forced Moves 鎺掗櫎鎵鏈夊叾浠栧彲鑳芥у悗鍞竴鐨勭瓟妗?br>

Sudoku Image  Sudoku Image

3. Pinned Squares
Intersection 鐨勫姞寮虹増錛屾牴鎹洿澶氱殑鎯呭喌紜畾鏌愪竴涓暟瀛楀湪璇ュ尯鍩熺殑鍞竴鍙兘浣嶇疆銆?br>Sudoku Image  Sudoku Image

4. Locked Sets

濡傚浘涓R5C1鍜孯6C1鍙兘濉?鎴?錛岀敱姝ゅ彲鎺掗櫎涓庝粬浠湁鍏崇殑鍩熶腑鐨勫叾浠栨牸濉?鍜?鐨勫彲鑳芥э紝浠庤孯6C2鍙兘濉?銆?/p>

Sudoku Image  Sudoku Image



ZelluX 2007-07-20 11:59 鍙戣〃璇勮
]]>
主站蜘蛛池模板: 日本v片免费一区二区三区| 免费精品国偷自产在线在线| 国产精品免费视频一区| 亚洲午夜福利在线视频| 成人免费毛片内射美女APP| va天堂va亚洲va影视中文字幕 | 亚洲国产精品久久久天堂| 一个人免费播放在线视频看片| 亚洲美女在线国产| 中文字幕av无码不卡免费| 精品亚洲综合在线第一区| 久久精品成人免费观看| 亚洲精品人成电影网| 免费看美女裸露无档网站| 亚洲成a人无码亚洲成www牛牛| 国产伦一区二区三区免费| 一级毛片人与动免费观看| 国产亚洲精品一品区99热| 91人成网站色www免费下载| 亚洲一区二区三区成人网站| 国产青草视频免费观看97| 男女交性无遮挡免费视频| 亚洲人色婷婷成人网站在线观看| 国产午夜无码精品免费看| 亚洲精品国产啊女成拍色拍| 免费观看的a级毛片的网站| 男女超爽视频免费播放| 国产亚洲精品精华液| 一色屋成人免费精品网站| 美女一级毛片免费观看| 亚洲精品美女久久777777| 免费成人福利视频| 黄人成a动漫片免费网站| 亚洲精品福利视频| 四虎永久免费网站免费观看| 久久最新免费视频| 亚洲一本之道高清乱码| 亚洲精品人成无码中文毛片| 在线人成精品免费视频| 美女露100%胸无遮挡免费观看| 久久久久久亚洲精品|