<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    adding the Amazon Rekognition component

    In this exercise, you will extend the application by adding the Amazon Rekognition component. As soon as you upload a photo to your Amazon S3 bucket, Amazon Rekognition processes the photo and identifies objects, people, text, scenes, and activities in the photo and labels it accordingly. 
    Note: Make sure to sign in to your AWS account with the AWS IAM user edXProjectUser credentials.

    To get started, follow the instructions below.

    1. Download the exercise code .zip file to your AWS Cloud9 environment.

    2. Unzip the exercise code .zip file.

    • Unzip the exercise code .zip file by typing the command below on your AWS Cloud9 terminal.
    • unzip ex-rekognition.zip

      The contents of the .zip file should be extracted to a folder with a similar name. You can view the folder on the left tree view.

    • You may want to close any tabs that remain open from previous exercises.

    3. Explore the exercise code.

    • Open the exercise-rekognition/FlaskApp/application.py file.
    • In the Homepage route function, notice that a Boto 3 client for Amazon Rekognition is created. The image uploaded in the Amazon S3 bucket is passed to the detect_labels API, which returns a list of labels processed by Amazon Rekognition. These labels are then populated on the UI.

    4. Run and test the code.

    • To run the application.py code, on the top menu bar, click Run -> Run Configurations -> Python3RunConfiguration.
    • Important: Notice that the run configuration runs the application.py for the previous exercise.
    • Point the run configuration to the correct exercise folder by editing the folder path in the Command text box in the bottom pane.
      In that text box, type exercise-rekognition/FlaskApp/application.py
    • Click Run on the left side. You should see a message like this:
    • Running on http://0.0.0.0:5000/

    • Go to your browser and type the IP address of the Amazon EC2 instance that hosts your AWS Cloud9 environment. At the end of the IP address, type :5000

      The application should now have the functionality related to Amazon Rekognition.

    • To test the Amazon Rekognition component, click Home on the application.
    • Upload an image. Amazon Rekognition should label the image with the image properties.

    Optional Challenge

    The Boto 3 detect_labels response includes a Confidence value. Can you update the application UI to include the Confidence? Or define a threshold and only display labels over the confidence threshold?



    眼鏡蛇

    posted on 2018-04-19 11:16 眼鏡蛇 閱讀(161) 評論(0)  編輯  收藏 所屬分類: AWS

    <2025年5月>
    27282930123
    45678910
    11121314151617
    18192021222324
    25262728293031
    1234567

    導航

    統計

    常用鏈接

    留言簿(6)

    隨筆分類

    隨筆檔案

    文章分類

    文章檔案

    搜索

    最新評論

    閱讀排行榜

    評論排行榜

    主站蜘蛛池模板: 久久精品免费电影| 老司机午夜性生免费福利| 黄视频在线观看免费| 亚洲欧洲国产成人综合在线观看 | 99在线免费观看视频| 国产成人亚洲综合色影视| 免费萌白酱国产一区二区三区| 久久99亚洲综合精品首页 | 成人性生交大片免费看无遮挡 | 91亚洲自偷手机在线观看| 99精品在线免费观看| 亚洲第一精品在线视频| 最近中文字幕免费2019| 亚洲另类精品xxxx人妖| 97无码免费人妻超级碰碰碰碰| 国产人成亚洲第一网站在线播放| 国内大片在线免费看| 天天综合亚洲色在线精品| jjzz亚洲亚洲女人| 在线观看免费无码视频| 亚洲美女免费视频| 国内一级一级毛片a免费| 在线播放国产不卡免费视频| 亚洲AV无码成人网站久久精品大| 4444www免费看| 亚洲色一区二区三区四区| 亚洲AV中文无码乱人伦在线视色| 日韩a级无码免费视频| 亚洲午夜精品一区二区公牛电影院 | 国内精品99亚洲免费高清| 免费在线中文日本| ww亚洲ww在线观看国产| 亚洲国产成人久久一区久久| 亚洲精品免费观看| 亚洲AV综合色区无码一二三区| 亚洲无码高清在线观看| 亚洲性线免费观看视频成熟| 一级毛片大全免费播放下载| 亚洲成A∨人片在线观看无码| 免费a级毛片永久免费| 巨波霸乳在线永久免费视频|