<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    adding the Amazon Rekognition component

    In this exercise, you will extend the application by adding the Amazon Rekognition component. As soon as you upload a photo to your Amazon S3 bucket, Amazon Rekognition processes the photo and identifies objects, people, text, scenes, and activities in the photo and labels it accordingly. 
    Note: Make sure to sign in to your AWS account with the AWS IAM user edXProjectUser credentials.

    To get started, follow the instructions below.

    1. Download the exercise code .zip file to your AWS Cloud9 environment.

    2. Unzip the exercise code .zip file.

    • Unzip the exercise code .zip file by typing the command below on your AWS Cloud9 terminal.
    • unzip ex-rekognition.zip

      The contents of the .zip file should be extracted to a folder with a similar name. You can view the folder on the left tree view.

    • You may want to close any tabs that remain open from previous exercises.

    3. Explore the exercise code.

    • Open the exercise-rekognition/FlaskApp/application.py file.
    • In the Homepage route function, notice that a Boto 3 client for Amazon Rekognition is created. The image uploaded in the Amazon S3 bucket is passed to the detect_labels API, which returns a list of labels processed by Amazon Rekognition. These labels are then populated on the UI.

    4. Run and test the code.

    • To run the application.py code, on the top menu bar, click Run -> Run Configurations -> Python3RunConfiguration.
    • Important: Notice that the run configuration runs the application.py for the previous exercise.
    • Point the run configuration to the correct exercise folder by editing the folder path in the Command text box in the bottom pane.
      In that text box, type exercise-rekognition/FlaskApp/application.py
    • Click Run on the left side. You should see a message like this:
    • Running on http://0.0.0.0:5000/

    • Go to your browser and type the IP address of the Amazon EC2 instance that hosts your AWS Cloud9 environment. At the end of the IP address, type :5000

      The application should now have the functionality related to Amazon Rekognition.

    • To test the Amazon Rekognition component, click Home on the application.
    • Upload an image. Amazon Rekognition should label the image with the image properties.

    Optional Challenge

    The Boto 3 detect_labels response includes a Confidence value. Can you update the application UI to include the Confidence? Or define a threshold and only display labels over the confidence threshold?



    眼鏡蛇

    posted on 2018-04-19 11:16 眼鏡蛇 閱讀(176) 評論(0)  編輯  收藏 所屬分類: AWS

    <2025年7月>
    293012345
    6789101112
    13141516171819
    20212223242526
    272829303112
    3456789

    導(dǎo)航

    統(tǒng)計

    常用鏈接

    留言簿(6)

    隨筆分類

    隨筆檔案

    文章分類

    文章檔案

    搜索

    最新評論

    閱讀排行榜

    評論排行榜

    主站蜘蛛池模板: 女人被男人躁的女爽免费视频| 亚洲欧美乱色情图片| 有码人妻在线免费看片| 又粗又硬免费毛片| 羞羞视频免费观看| 全亚洲最新黄色特级网站| 免费精品视频在线| 亚洲精品国产精品乱码不卞 | 精品熟女少妇AV免费观看| 亚洲校园春色小说| 大学生一级毛片免费看| 亚洲人成色99999在线观看| 日韩视频在线免费| www永久免费视频| 精品亚洲综合在线第一区| 无码一区二区三区免费| 99久久免费国产精品特黄| 亚洲中文字幕无码av| 免费看一级做a爰片久久| 一级有奶水毛片免费看| 亚洲国产精品婷婷久久| 无码中文字幕av免费放| 久久精品国产亚洲av天美18 | 国产无遮挡裸体免费视频| 乱爱性全过程免费视频| 亚洲av最新在线网址| 免费影院未满十八勿进网站| 亚洲熟妇无码一区二区三区 | 亚洲高清国产拍精品26U| 日本视频一区在线观看免费| 亚洲欧洲日产专区| 日韩精品亚洲专区在线观看| 在线观看片免费人成视频播放 | 亚洲AV色无码乱码在线观看 | 久久精品夜色噜噜亚洲A∨| 一级毛片成人免费看免费不卡| 亚洲av无码片区一区二区三区| 男人的天堂亚洲一区二区三区| 成年大片免费高清在线看黄| 日韩亚洲AV无码一区二区不卡 | 亚洲国产精品精华液|