在網上收集了一些關于java內存分配的知識
Java 中的堆和棧
簡單的說:
Java把內存劃分成兩種:一種是棧內存,一種是堆內存。
在函數中定義的一些基本類型的變量和對象的引用變量都在函數的棧內存中分配。
當在一段代碼塊定義一個變量時,Java就在棧中為這個變量分配內存空間,當超過變量的作用域后,Java會自動釋放掉為該變量所分配的內存空間,該內存空間可以立即被另作他用。
堆內存用來存放由new創建的對象和數組。
在堆中分配的內存,由Java虛擬機的自動垃圾回收器來管理。
在堆中產生了一個數組或對象后,還可以在棧中定義一個特殊的變量,讓棧中這個變量的取值等于數組或對象在堆內存中的首地址,棧中的這個變量就成了數組或對象的引用變量。
引用變量就相當于是為數組或對象起的一個名稱,以后就可以在程序中使用棧中的引用變量來訪問堆中的數組或對象。
具體的說:
棧與堆都是Java用來在Ram中存放數據的地方。與C++不同,Java自動管理棧和堆,程序員不能直接地設置?;蚨选?
Java的堆是一個運行時數據區,類的(對象從中分配空間。這些對象通過new、newarray、anewarray和multianewarray等 指令建立,它們不需要程序代碼來顯式的釋放。堆是由垃圾回收來負責的,堆的優勢是可以動態地分配內存大小,生存期也不必事先告訴編譯器,因為它是在運行時 動態分配內存的,Java的垃圾收集器會自動收走這些不再使用的數據。但缺點是,由于要在運行時動態分配內存,存取速度較慢。
棧的優勢是,存取速度比堆要快,僅次于寄存器,棧數據可以共享。但缺點是,存在棧中的數據大小與生存期必須是確定的,缺乏靈活性。棧中主要存放一些基本 類型的變量(,int, short, long, byte, float, double, boolean, char)和對象句柄。
棧有一個很重要的特殊性,就是存在棧中的數據可以共享。假設我們同時定義:
int a = 3;
int b = 3;
編譯器先處理int a = 3;首先它會在棧中創建一個變量為a的引用,然后查找棧中是否有3這個值,如果沒找到,就將3存放進來,然后將a指向3。接著處理int b = 3;在創建完b的引用變量后,因為在棧中已經有3這個值,便將b直接指向3。這樣,就出現了a與b同時均指向3的情況。這時,如果再令a=4;那么編譯器 會重新搜索棧中是否有4值,如果沒有,則將4存放進來,并令a指向4;如果已經有了,則直接將a指向這個地址。因此a值的改變不會影響到b的值。要注意這 種數據的共享與兩個對象的引用同時指向一個對象的這種共享是不同的,因為這種情況a的修改并不會影響到b, 它是由編譯器完成的,它有利于節省空間。而一個對象引用變量修改了這個對象的內部狀態,會影響到另一個對象引用變量。
String是一個特殊的包裝類數據。可以用:
String str = new String("abc");
String str = "abc";
兩種的形式來創建,第一種是用new()來新建對象的,它會在存放于堆中。每調用一次就會創建一個新的對象。
而第二種是先在棧中創建一個對String類的對象引用變量str,然后查找棧中有沒有存放"abc",如果沒有,則將"abc"存放進棧,并令str指向”abc”,如果已經有”abc” 則直接令str指向“abc”。
比較類里面的數值是否相等時,用equals()方法;當測試兩個包裝類的引用是否指向同一個對象時,用==,下面用例子說明上面的理論。
String str1 = "abc";
String str2 = "abc";
System.out.println(str1==str2); //true
可以看出str1和str2是指向同一個對象的。
String str1 =new String ("abc");
String str2 =new String ("abc");
System.out.println(str1==str2); // false
用new的方式是生成不同的對象。每一次生成一個。
因此用第二種方式創建多個”abc”字符串,在內存中其實只存在一個對象而已. 這種寫法有利與節省內存空間. 同時它可以在一定程度上提高程序的運行速度,因為JVM會自動根據棧中數據的實際情況來決定是否有必要創建新對象。而對于String str = new String("abc");的代碼,則一概在堆中創建新對象,而不管其字符串值是否相等,是否有必要創建新對象,從而加重了程序的負擔。
另一方面, 要注意: 我們在使用諸如String str = "abc";的格式定義類時,總是想當然地認為,創建了String類的對象str。擔心陷阱!對象可能并沒有被創建!而可能只是指向一個先前已經創建的 對象。只有通過new()方法才能保證每次都創建一個新的對象。 由于String類的immutable性質,當String變量需要經常變換其值時,應該考慮使用StringBuffer類,以提高程序效率。
java中內存分配策略及堆和棧的比較
2.1 內存分配策略
按照編譯原理的觀點,程序運行時的內存分配有三種策略,分別是靜態的,棧式的,和堆式的.
靜態存儲分配是指在編譯時就能確定每個數據目標在運行時刻的存儲空間需求,因而在編譯時就可以給他們分配固定的內存空間.這種分配策略要求程序代碼中不允 許有可變數據結構(比如可變數組)的存在,也不允許有嵌套或者遞歸的結構出現,因為它們都會導致編譯程序無法計算準確的存儲空間需求.
棧式存儲分配也可稱為動態存儲分配,是由一個類似于堆棧的運行棧來實現的.和靜態存儲分配相反,在棧式存儲方案中,程序對數據區的需求在編譯時是完全未知 的,只有到運行的時候才能夠知道,但是規定在運行中進入一個程序模塊時,必須知道該程序模塊所需的數據區大小才能夠為其分配內存.和我們在數據結構所熟知 的棧一樣,棧式存儲分配按照先進后出的原則進行分配。
靜態存儲分配要求在編譯時能知道所有變量的存儲要求,棧式存儲分配要求在過程的入口處必須知道所有的存儲要求,而堆式存儲分配則專門負責在編譯時或運行時 模塊入口處都無法確定存儲要求的數據結構的內存分配,比如可變長度串和對象實例.堆由大片的可利用塊或空閑塊組成,堆中的內存可以按照任意順序分配和釋 放.
2.2 堆和棧的比較
上面的定義從編譯原理的教材中總結而來,除靜態存儲分配之外,都顯得很呆板和難以理解,下面撇開靜態存儲分配,集中比較堆和棧:
從堆和棧的功能和作用來通俗的比較,堆主要用來存放對象的,棧主要是用來執行程序的.而這種不同又主要是由于堆和棧的特點決定的:
在編程中,例如C/C++中,所有的方法調用都是通過棧來進行的,所有的局部變量,形式參數都是從棧中分配內存空間的。實際上也不是什么分配,只是從棧頂 向上用就行,就好像工廠中的傳送帶(conveyor belt)一樣,Stack Pointer會自動指引你到放東西的位置,你所要做的只是把東西放下來就行.退出函數的時候,修改棧指針就可以把棧中的內容銷毀.這樣的模式速度最快, 當然要用來運行程序了.需要注意的是,在分配的時候,比如為一個即將要調用的程序模塊分配數據區時,應事先知道這個數據區的大小,也就說是雖然分配是在程 序運行時進行的,但是分配的大小多少是確定的,不變的,而這個"大小多少"是在編譯時確定的,不是在運行時.
堆是應用程序在運行的時候請求操作系統分配給自己內存,由于從操作系統管理的內存分配,所以在分配和銷毀時都要占用時間,因此用堆的效率非常低.但是堆的 優點在于,編譯器不必知道要從堆里分配多少存儲空間,也不必知道存儲的數據要在堆里停留多長的時間,因此,用堆保存數據時會得到更大的靈活性。事實上,面 向對象的多態性,堆內存分配是必不可少的,因為多態變量所需的存儲空間只有在運行時創建了對象之后才能確定.在C++中,要求創建一個對象時,只需用 new命令編制相關的代碼即可。執行這些代碼時,會在堆里自動進行數據的保存.當然,為達到這種靈活性,必然會付出一定的代價:在堆里分配存儲空間時會花 掉更長的時間!這也正是導致我們剛才所說的效率低的原因,看來列寧同志說的好,人的優點往往也是人的缺點,人的缺點往往也是人的優點(暈~).
2.3 JVM中的堆和棧
JVM是基于堆棧的虛擬機.JVM為每個新創建的線程都分配一個堆棧.也就是說,對于一個Java程序來說,它的運行就是通過對堆棧的操作來完成的。堆棧以幀為單位保存線程的狀態。JVM對堆棧只進行兩種操作:以幀為單位的壓棧和出棧操作。
我們知道,某個線程正在執行的方法稱為此線程的當前方法.我們可能不知道,當前方法使用的幀稱為當前幀。當線程激活一個Java方法,JVM就會在線程的 Java堆棧里新壓入一個幀。這個幀自然成為了當前幀.在此方法執行期間,這個幀將用來保存參數,局部變量,中間計算過程和其他數據.這個幀在這里和編譯 原理中的活動紀錄的概念是差不多的.
從Java的這種分配機制來看,堆棧又可以這樣理解:堆棧(Stack)是操作系統在建立某個進程時或者線程(在支持多線程的操作系統中是線程)為這個線程建立的存儲區域,該區域具有先進后出的特性。
每一個Java應用都唯一對應一個JVM實例,每一個實例唯一對應一個堆。應用程序在運行中所創建的所有類實例或數組都放在這個堆中,并由應用所有的線程 共享.跟C/C++不同,Java中分配堆內存是自動初始化的。Java中所有對象的存儲空間都是在堆中分配的,但是這個對象的引用卻是在堆棧中分配,也 就是說在建立一個對象時從兩個地方都分配內存,在堆中分配的內存實際建立這個對象,而在堆棧中分配的內存只是一個指向這個堆對象的指針(引用)而已。
2.4 GC的思考
Java為什么慢?JVM的存在當然是一個原因,但有人說,在Java中,除了簡單類型(int,char等)的數據結構,其它都是在堆中分配內存(所以說Java的一切都是對象),這也是程序慢的原因之一。
我的想法是(應該說代表TIJ的觀點),如果沒有Garbage Collector(GC),上面的說法就是成立的.堆不象棧是連續的空間,沒有辦法指望堆本身的內存分配能夠象堆棧一樣擁有傳送帶般的速度,因為,誰會 為你整理龐大的堆空間,讓你幾乎沒有延遲的從堆中獲取新的空間呢?
這個時候,GC站出來解決問題.我們都知道GC用來清除內存垃圾,為堆騰出空間供程序使用,但GC同時也擔負了另外一個重要的任務,就是要讓Java中堆 的內存分配和其他語言中堆棧的內存分配一樣快,因為速度的問題幾乎是眾口一詞的對Java的詬病.要達到這樣的目的,就必須使堆的分配也能夠做到象傳送帶 一樣,不用自己操心去找空閑空間.這樣,GC除了負責清除Garbage外,還要負責整理堆中的對象,把它們轉移到一個遠離Garbage的純凈空間中無 間隔的排列起來,就象堆棧中一樣緊湊,這樣Heap Pointer就可以方便的指向傳送帶的起始位置,或者說一個未使用的空間,為下一個需要分配內存的對象"指引方向".因此可以這樣說,垃圾收集影響了對 象的創建速度,聽起來很怪,對不對?
那GC怎樣在堆中找到所有存活的對象呢?前面說了,在建立一個對象時,在堆中分配實際建立這個對象的內存,而在堆棧中分配一個指向這個堆對象的指針(引 用),那么只要在堆棧(也有可能在靜態存儲區)找到這個引用,就可以跟蹤到所有存活的對象.找到之后,GC將它們從一個堆的塊中移到另外一個堆的塊中,并 將它們一個挨一個的排列起來,就象我們上面說的那樣,模擬出了一個棧的結構,但又不是先進后出的分配,而是可以任意分配的,在速度可以保證的情況下, Isn't it great?
但是,列寧同志說了,人的優點往往也是人的缺點,人的缺點往往也是人的優點(再暈~~).GC()的運行要占用一個線程,這本身就是一個降低程序運行性能 的缺陷,更何況這個線程還要在堆中把內存翻來覆去的折騰.不僅如此,如上面所說,堆中存活的對象被搬移了位置,那么所有對這些對象的引用都要重新賦值.這 些開銷都會導致性能的降低.
基礎數據類型直接在棧空間分配,方法的形式參數,直接在??臻g分配,當方法調用完成后從??臻g回收。引用數據類型,需要用new來創建,既在??臻g 分配一個地址空間,又在堆空間分配對象的類變量 。方法的引用參數,在??臻g分配一個地址空間,并指向堆空間的對象區,當方法調用完成后從棧空間回收。局部變量new出來時,在??臻g和堆空間中分配空 間,當局部變量生命周期結束后,棧空間立刻被回收,堆空間區域等待GC回收。方法調用時傳入的literal參數,先在棧空間分配,在方法調用完成后從棧 空間分配。字符串常量在DATA區域分配,this在堆空間分配。數組既在??臻g分配數組名稱,又在堆空間分配數組實際的大?。?/p>
哦 對了,補充一下static在DATA區域分配。
其實是有規律的,只要你理解了這些個基本的原理:
堆空間的話:操作系統有一個記錄空閑內存地址的鏈表,當系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大 于所申請空間的堆結點,然后將該結點從空閑結點鏈表中刪除,并將該結點的空間分配給程序。另外,對于大多數系統,會在這塊內存空間中的首地址處記錄本次分 配的大小,這樣代碼中的delete語句才能正確的釋放本內存空間。另外由于找到的堆結點的大小不一定正好等于申請的大小,系統會自動的將多余的那部分重 新放入空閑鏈表中。是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便。另外,在WINDOWS下,最好的方式是用 VirtualAlloc分配內存,他不是在堆,也不是在棧是直接在進程的地址空間中保留一快內存,雖然用起來最不方便。但是速度快,也最靈活。是向高地 址擴展的數據結構,是不連續的內存區域。這是由于系統是用鏈表來存儲的空閑內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受 限于計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。
??臻g的話:在Windows下, 棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在WINDOWS下,棧的大小是固定 的(是一個編譯時就確定的常數),如果申請的空間超過棧的剩余空間時,將提示overflow。因此,能從棧獲得的空間較小。只要棧的剩余空間大于所申請 空間,系統將為程序提供內存,否則將報異常提示棧溢出。 由系統自動分配,速度較快。但程序員是無法控制的。
JVM中的堆和棧
JVM是基于堆棧的虛擬機。JVM為每個新創建的線程都分配一個堆棧。也就是說,對于一個Java程序來說,它的運行就是通過對堆棧的操作來完成的。堆棧以幀為單位保存線程的狀態。JVM對堆棧只進行兩種操作:以幀為單位的壓棧和出棧操作。
我們知道,某個線程正在執行的方法稱為此線程的當前方法。我們可能不知道,當前方法使用的幀稱為當前幀。當線程激活一個Java方法,JVM就會在 線程的Java堆棧里新壓入一個幀。這個幀自然成為了當前幀.在此方法執行期間,這個幀將用來保存參數,局部變量,中間計算過程和其他數據。這個幀在這里 和編譯原理中的活動紀錄的概念是差不多的。
從Java的這種分配機制來看,堆棧又可以這樣理解:堆棧(Stack)是操作系統在建立某個進程時或者線程(在支持多線程的操作系統中是線程)為這個線程建立的存儲區域,該區域具有先進后出的特性。
每一個Java應用都唯一對應一個JVM實例,每一個實例唯一對應一個堆。應用程序在運行中所創建的所有類實例或數組都放在這個堆中,并由應用所有 的線程共享。跟C/C++不同,Java中分配堆內存是自動初始化的。Java中所有對象的存儲空間都是在堆中分配的,但是這個對象的引用卻是在堆棧中分 配,也就是說在建立一個對象時從兩個地方都分配內存,在堆中分配的內存實際建立這個對象,而在堆棧中分配的內存只是一個指向這個堆對象的指針(引用)而 已。
----2008年11月24日