第一章兩天前就讀完了,因?yàn)楣ぷ魃系氖虑橥系浆F(xiàn)在才來(lái)做最后這七道題,這些題目都是要求寫(xiě)一個(gè)過(guò)程返回另一個(gè)過(guò)程作為結(jié)果。
習(xí)題1.40,顯而易見(jiàn),要求cubic過(guò)程返回的就是方程本身,照著定義來(lái)就行了:
(define (cubic a b c)
(lambda(x) (+ (* x x x) (* a x x) (* b x) c)))
習(xí)題1.41,注意到了題目已經(jīng)說(shuō)明了:以
有一個(gè)參數(shù)的過(guò)程做參數(shù),那就很簡(jiǎn)單了:
(define (double g) (lambda(x) (g (g x))))
返回lambda構(gòu)造的過(guò)程,參數(shù)過(guò)程應(yīng)用兩次即可,那么
> (((double (double double)) inc) 5)
21
習(xí)題1.42,組合應(yīng)用:
(define (composite f g)
(lambda(x) (f (g x))))
習(xí)題1.43,在1.42基礎(chǔ)上使用遞歸即可:
(define (repeated f n)
(if (= n 1)
f
(composite f (repeated f (- n 1)))))
習(xí)題1.44,在1.43基礎(chǔ)上,首先定義smooth過(guò)程:
(define (smooth f)
(lambda(x) (/ (+ (f (- x dx)) (f x) (f (+ x dx))) 3)))
然后使用repeated過(guò)程產(chǎn)生n次平滑函數(shù):
(define (repeate-smooth n)
(repeated smooth n))
習(xí)題1.45,不是一下子能說(shuō)清楚,經(jīng)過(guò)測(cè)試可以知道n次方根搜索不動(dòng)點(diǎn),平均阻尼需要經(jīng)過(guò)log2(n)(以2為底的對(duì)數(shù))重復(fù)才會(huì)收斂,因此:
(define (nth-root-test x n k)
(fixed-point ((repeated average-damp k) (lambda (y) (/ x (fast-expt y (- n 1)))))
1.0))
習(xí)題1.46,這題很有趣,產(chǎn)生過(guò)程的過(guò)程也是遞歸的,相當(dāng)好玩,iterative-improve產(chǎn)生的過(guò)程需要遞歸調(diào)用自身,仍然使用iterative-improve產(chǎn)生:
(define (iterative-improve good-enough improve-it)
(lambda(guess)
(if (good-enough guess)
guess
((iterative-improve good-enough improve-it) (improve-it guess)))))
如果猜測(cè)結(jié)果足夠,返回猜測(cè)結(jié)果,如果沒(méi)有,遞歸調(diào)用lambda產(chǎn)生的這個(gè)過(guò)程應(yīng)用于改進(jìn)后的猜測(cè)值。
重寫(xiě)sqrt如下:
(define (sqrtt x)
(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.0001))
(define (improve guess)
(average guess (/ x guess)))
(iterative-improve good-enough? improve))
注意,這里的sqrrt過(guò)程產(chǎn)生的是一個(gè)以初始猜測(cè)值為參數(shù)的過(guò)程,所有調(diào)用應(yīng)該這樣:
> ((sqrtt 4) 1.0)
2.000000000929222947
下面的fixed-point過(guò)程也是如此。
重寫(xiě)fixed-point過(guò)程如下:
(define (fixed-point f)
(define tolerance 0.00001)
(define (good-enough? guess)
(< (abs (- guess (f guess))) tolerance))
(define (improve guess) (f guess))
(iterative-improve good-enough? improve))