<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    vince

    2006年11月27日 #

    Lazy Initialization and the DAO pattern with Hibernate and Spring -------轉自:Karl Baum's Weblog

    Thursday July 08, 2004
    Lazy Initialization and the DAO pattern with Hibernate and Spring

    Hibernate and Lazy Initialization

    Hibernate object relational mapping offers both lazy and non-lazy modes of object initialization. Non-lazy initialization retrieves an object and all of its related objects at load time. This can result in hundreds if not thousands of select statements when retrieving one entity. The problem is compounded when bi-directional relationships are used, often causing entire databases to be loaded during the initial request. Of course one could tediously examine each object relationship and manually remove those most costly, but in the end, we may be losing the ease of use benefit sought in using the ORM tool.

    The obvious solution is to employ the lazy loading mechanism provided by hibernate. This initialization strategy only loads an object's one-to-many and many-to-many relationships when these fields are accessed. The scenario is practically transparent to the developer and a minimum amount of database requests are made, resulting in major performance gains. One drawback to this technique is that lazy loading requires the Hibernate session to remain open while the data object is in use. This causes a major problem when trying to abstract the persistence layer via the Data Access Object pattern. In order to fully abstract the persistence mechanism, all database logic, including opening and closing sessions, must not be performed in the application layer. Most often, this logic is concealed behind the DAO implementation classes which implement interface stubs. The quick and dirty solution is to forget the DAO pattern and include database connection logic in the application layer. This works for small applications but in large systems this can prove to be a major design flaw, hindering application extensibility.

    Being Lazy in the Web Layer

    Fortunately for us, the Spring Framework has developed an out of box web solution for using the DAO pattern in combination with Hibernate lazy loading. For anyone not familiar with using the Spring Framework in combination with Hibernate, I will not go into the details here, but I encourage you to read Hibernate Data Access with the Spring Framework. In the case of a web application, Spring comes with both the OpenSessionInViewFilter and the OpenSessionInViewInterceptor. One can use either one interchangeably as both serve the same function. The only difference between the two is the interceptor runs within the Spring container and is configured within the web application context while the Filter runs in front of Spring and is configured within the web.xml. Regardless of which one is used, they both open the hibernate session during the request binding this session to the current thread. Once bound to the thread, the open hibernate session can transparently be used within the DAO implementation classes. The session will remain open for the view allowing lazy access the database value objects. Once the view logic is complete, the hibernate session is closed either in the Filter doFilter method or the Interceptor postHandle method. Below is an example of the configuration of each component:

    Interceptor Configuration

    <beans>
    <bean id="urlMapping"
    class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
    <property name="interceptors">
    <list>
    <ref bean="openSessionInViewInterceptor"/>
    </list>
    </property>
    <property name="mappings">
    ...
    </bean>
    ...
    <bean name="openSessionInViewInterceptor"
    class="org.springframework.orm.hibernate.support.OpenSessionInViewInterceptor">
    <property name="sessionFactory"><ref bean="sessionFactory"/></property>
    </bean>
    </beans>
    Filter Configuration

    <web-app>
    ...
    <filter>
    <filter-name>hibernateFilter</filter-name>
    <filter-class>
    org.springframework.orm.hibernate.support.OpenSessionInViewFilter
    </filter-class>
    </filter>
    ...
    <filter-mapping>
    <filter-name>hibernateFilter</filter-name>
    <url-pattern>*.spring</url-pattern>
    </filter-mapping>
    ...
    </web-app>
    Implementing the Hibernate DAO's to use the open session is simple. In fact, if you are already using the Spring Framework to implement your Hibernate DAO's, most likely you will not have to change a thing. The DAO's must access Hibernate through the convenient HibernateTemplate utility, which makes database access a piece of cake. Below is an example DAO.

    Example DAO

    public class HibernateProductDAO extends HibernateDaoSupport implements ProductDAO {

    public Product getProduct(Integer productId) {
    return (Product)getHibernateTemplate().load(Product.class, productId);
    }

    public Integer saveProduct(Product product) {
    return (Integer) getHibernateTemplate().save(product);
    }

    public void updateProduct(Product product) {
    getHibernateTemplate().update(product);
    }
    }
    Being Lazy in the Business Layer

    Even outside the view, the Spring Framework makes it easy to use lazy load initialization, through the AOP interceptor HibernateInterceptor. The hibernate interceptor transparently intercepts calls to any business object configured in the Spring application context, opening a hibernate session before the call, and closing the session afterward. Let's run through a quick example. Suppose we have an interface BusinessObject:

    public interface BusinessObject {
    public void doSomethingThatInvolvesDaos();
    }
    The class BusinessObjectImpl implements BusinessObject:


    public class BusinessObjectImpl implements BusinessObject {
    public void doSomethingThatInvolvesDaos() {
    // lots of logic that calls
    // DAO classes Which access
    // data objects lazily
    }
    }
    Through some configurations in the Spring application context, we can instruct the HibernateInterceptor to intercept calls to the BusinessObjectImpl allowing it's methods to lazily access data objects. Take a look at the fragment below:

    <beans>
    <bean id="hibernateInterceptor" class="org.springframework.orm.hibernate.HibernateInterceptor">
    <property name="sessionFactory">
    <ref bean="sessionFactory"/>
    </property>
    </bean>
    <bean id="businessObjectTarget" class="com.acompany.BusinessObjectImpl">
    <property name="someDAO"><ref bean="someDAO"/></property>
    </bean>
    <bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
    <property name="target"><ref bean="businessObjectTarget"/></property>
    <property name="proxyInterfaces">
    <value>com.acompany.BusinessObject</value>
    </property>
    <property name="interceptorNames">
    <list>
    <value>hibernateInterceptor</value>
    </list>
    </property>
    </bean>
    </beans>

    When the businessObject bean is referenced, the HibernateInterceptor opens a hibernate session and passes the call onto the BusinessObjectImpl. When the BusinessObjectImpl has finished executing, the HibernateInterceptor transparently closes the session. The application code has no knowledge of any persistence logic, yet it is still able to lazily access data objects.

    Being Lazy in your Unit Tests

    Last but not least, we'll need the ability to test our lazy application from J-Unit. This is easily done by overriding the setUp and tearDown methods of the TestCase class. I prefer to keep this code in a convenient abstract TestCase class for all of my tests to extend.

    public abstract class MyLazyTestCase extends TestCase {

    private SessionFactory sessionFactory;
    private Session session;

    public void setUp() throws Exception {
    super.setUp();
    SessionFactory sessionFactory = (SessionFactory) getBean("sessionFactory");
    session = SessionFactoryUtils.getSession(sessionFactory, true);
    Session s = sessionFactory.openSession();
    TransactionSynchronizationManager.bindResource(sessionFactory, new SessionHolder(s));

    }

    protected Object getBean(String beanName) {
    //Code to get objects from Spring application context
    }

    public void tearDown() throws Exception {
    super.tearDown();
    SessionHolder holder = (SessionHolder) TransactionSynchronizationManager.getResource(sessionFactory);
    Session s = holder.getSession();
    s.flush();
    TransactionSynchronizationManager.unbindResource(sessionFactory);
    SessionFactoryUtils.closeSessionIfNecessary(s, sessionFactory);
    }
    }

    posted @ 2006-11-27 18:10 vince 閱讀(25482) | 評論 (3)編輯 收藏

    My Links

    Blog Stats

    常用鏈接

    留言簿(1)

    我參與的團隊

    隨筆檔案

    文章檔案

    搜索

    最新評論

    主站蜘蛛池模板: 久久精品国产精品亚洲| 最近的免费中文字幕视频| 国产亚洲精品免费视频播放| 精品在线观看免费| 亚洲第一黄色网址| 91av免费在线视频| 亚洲AV中文无码乱人伦下载 | 亚洲欧洲中文日产| 国产成人精品免费视频动漫| 亚洲国产精品专区| 好吊妞998视频免费观看在线| 亚洲AV永久无码精品放毛片| 免费一级特黄特色大片在线观看| 有码人妻在线免费看片| 亚洲精品少妇30p| 99ee6热久久免费精品6| 亚洲AV一二三区成人影片| 在线观看免费为成年视频| 美女裸体无遮挡免费视频网站| 亚洲中文字幕久久精品无码APP| 国产免费无码一区二区| 亚洲国产美女视频| 天堂亚洲免费视频| 一区二区三区观看免费中文视频在线播放 | 色偷偷亚洲第一综合| 亚洲一区二区三区影院| 性xxxxx免费视频播放| 亚洲a∨国产av综合av下载| 中文字幕在亚洲第一在线| 亚洲高清视频免费| 免费夜色污私人影院网站电影| 久久久久久亚洲av成人无码国产| 成人特黄a级毛片免费视频| 一个人免费观看www视频| 亚洲国产成人精品久久 | 亚洲日韩精品射精日| 亚洲精品免费网站| 久久99久久成人免费播放| 中文字幕 亚洲 有码 在线| 亚洲国产精品一区二区第一页免| 最近免费字幕中文大全视频|