<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    Chan Chen Coding...

    How does DNS work

    Suppose your computer wants to find the IP address of network-surveys.cr.yp.to. It contacts a series of DNS servers around the Internet.

    There are several DNS servers with information about network-surveys.cr.yp.to. A central root server (located at Internet HQ in Virginia) has the following data in a file on disk:

         .:198.41.0.4      
         &to:198.6.1.82
    The root server's IP address is 198.41.0.4; your computer also has this address in a file on disk. Your computer sends its question to the root server, and receives a response from the root server's data:
         +--------+  network-surveys.cr.yp.to?  +-----------+      
         | Your | --------------------------> |198.41.0.4 |
         |computer| <--------------- |root server|
         +--------+ &to:198.6.1.82 +-----------+
    The response &to:198.6.1.82 is a delegation. It says ``For information about .to, ask the DNS server at IP address 198.6.1.82.''

    The DNS server at 198.6.1.82 (also located somewhere in Virginia) has the following data in a file on disk:

         .to:198.6.1.82      &yp.to:131.193.178.160 
    Your computer sends its question to that DNS server, and receives a response:
         +--------+  network-surveys.cr.yp.to?  +----------+      
         | Your | --------------------------> |198.6.1.82|
         |computer| <------------------------ |.to server|
         +--------+ &yp.to:131.193.178.160 +----------+
    The response &yp.to:131.193.178.160 is another delegation. It says ``For information about .yp.to, ask the DNS server at IP address 131.193.178.160.''

    The DNS server at 131.193.178.160 (located in my office in Chicago) has the following data in a file on disk:

         .yp.to:131.193.178.160      =network-surveys.cr.yp.to:131.193.178.100 
    Your computer sends its question to that DNS server, and receives a response:
         +--------+           network-surveys.cr.yp.to?         +---------------+      
         | Your | ------------------------------------------> |131.193.178.160|
         |computer| <------------------------------------------ | .yp.to server |
         +--------+ =network-surveys.cr.yp.to:131.193.178.100 +---------------+
    The response =network-surveys.cr.yp.to:131.193.178.100 finally answers the original question: the IP address of network-surveys.cr.yp.to is 131.193.178.100.

    All of this work is handled by a DNS cache running on your computer. Your computer remembers everything that it learned (for a limited amount of time; information changes!) to save time later. As an alternative, your computer can contact an external DNS cache operated by your Internet service provider; the external DNS cache will do all the work and report the answer.

    Multiple servers

    To protect against computer failure, there are actually several root servers, several .to servers, and two yp.to servers. Each of the root servers has the following information:
        .:198.41.0.4:a      
        .:128.9.0.107:b
        .:192.33.4.12:c
        .:128.8.10.90:d
        .:192.203.230.10:e
        .:192.5.5.241:f
        .:192.112.36.4:g
        .:128.63.2.53:h
        .:192.36.148.17:i
        .:192.58.128.30:j
        .:193.0.14.129:k
        .:198.32.64.12:l
        .:202.12.27.33:m
        &to:128.250.1.21:a
        &to:193.0.0.193:b
        &to:196.7.0.139:c
        &to:206.184.59.10:d
        &to:198.6.1.82:e
        &to:206.86.247.253:f
        &to:148.59.19.11:g
    Each of the .to servers has the following information:
        .to:128.250.1.21:a      
        .to:193.0.0.193:b
        .to:196.7.0.139:c
        .to:206.184.59.10:d
        .to:198.6.1.82:e
        .to:206.86.247.253:f
        .to:148.59.19.11:g
        &yp.to:131.193.178.181:a
        &yp.to:131.193.178.160:b
        # or, in BIND master zone-file format:
        # yp.to IN NS a.ns.yp.to
        # yp.to IN NS b.ns.yp.to
        # a.ns.yp.to IN A 131.193.178.181
        # b.ns.yp.to IN A 131.193.178.160
    Your computer tries the root servers in a random order. When it receives a response from some root server, it moves to the .to servers, and tries them in a random order. It eventually receives the answer from one of the two yp.to servers.

    Reverse lookups

    Suppose your computer sees the IP address 208.33.217.122 and wants to know the corresponding computer name.

    Your computer asks a series of DNS servers about the name 122.217.33.208.in-addr.arpa. The root servers have the following information:

        &33.208.in-addr.arpa:206.228.179.10:c      
        &33.208.in-addr.arpa:144.228.254.10:b
        &33.208.in-addr.arpa:144.228.255.10:a
    The DNS server at IP address 144.228.254.10 has the following information:
        .33.208.in-addr.arpa:144.228.255.10:a      
        .33.208.in-addr.arpa:206.228.179.10:c
        .33.208.in-addr.arpa:144.228.254.10:b
        &217.33.208.in-addr.arpa:209.191.164.20:a
        &217.33.208.in-addr.arpa:206.253.194.65:b
    The DNS server at IP address 209.191.164.20 has the following information:
        .217.33.208.in-addr.arpa:209.191.164.20:a      
        .217.33.208.in-addr.arpa:206.253.194.65:b
        =mm-outgoing.amazon.com:208.33.217.122
    The answer is mm-outgoing.amazon.com.

    Looking up the address for a name, and then the computer name for that address, doesn't necessarily produce the original name. Looking up the computer name for an address, and then the address for that name, doesn't necessarily produce the original address.

     

    1. Your web browser asks the resolving DNS server what the address of www.domainname.com is. Your computer already knows where the local ISP resolving DNS server is through its network configuration. 
    2. The Resolving DNS server does not know the address. So it asks a root server the same question. The 13 root servers have globally well-known IP addresses, and are run by a US-based company called ICANN
    3. The root server replies that it does not know, but it gives the address of the server which knows about .com domains. 
    4. The resolving DNS server asks the .com server what the address of www.domainname.com is. 
    5. The .com server replies that it does not know, but it gives the address of the server which knows about .domainname.com domain. This server is can be a managed server and many companies pay an annual fee (via a domain registar) to maintain this referral for their domain.
    6. The resolving DNS server asks the .domainname.com server what the address of www.domainname.com is. 
    7. The server answers the query with the IP address of www.domainname.com, and marks the response as “authoratitve”. This is an assertion that the answer is correct and complete. It also adds to its reply that “this data is valid for 24 hours”, so that anyone who is asking can confidently re-use the information for that time without having to issue another query. 
    8. The resolving DNS server finally has its answer, and can reply back to the web browser with the IP address. Crucially it marks its answer as “non-authoratitive”, so that the web browser knows it has the information indirectly



    -----------------------------------------------------
    Silence, the way to avoid many problems;
    Smile, the way to solve many problems;

    posted on 2012-02-20 11:47 Chan Chen 閱讀(279) 評論(0)  編輯  收藏 所屬分類: Network

    主站蜘蛛池模板: 少妇亚洲免费精品| 亚洲美女aⅴ久久久91| 中文字幕专区在线亚洲| 亚洲第一二三四区| 特级无码毛片免费视频| 亚洲视频免费在线播放| 亚洲伊人成无码综合网 | 噜噜噜亚洲色成人网站∨| 国产无遮挡无码视频免费软件 | 久久综合久久综合亚洲| 两个人的视频www免费| 国产男女猛烈无遮挡免费视频 | 国产亚洲一区二区三区在线观看| 亚洲一区二区三区高清在线观看 | 精品视频一区二区三区免费| 亚洲综合精品一二三区在线| 一区二区三区在线免费观看视频| 猫咪社区免费资源在线观看 | 无码囯产精品一区二区免费| 亚洲精品视频在线观看你懂的| 亚洲中文字幕一区精品自拍| 国产成人3p视频免费观看| 一级毛片视频免费| 亚洲激情在线观看| 91国内免费在线视频| 亚洲精品在线视频| 黄网站免费在线观看| 亚洲妇女熟BBW| 中文字幕无码精品亚洲资源网| 88xx成人永久免费观看| 亚洲成A∨人片在线观看不卡| 国产亚洲综合视频| 国产三级免费电影| 男女猛烈xx00免费视频试看| 亚洲人成色777777在线观看| 国产性生大片免费观看性 | 亚洲精品在线播放| 日韩激情无码免费毛片| 亚洲爆乳无码精品AAA片蜜桃| 女人18一级毛片免费观看| 亚洲另类无码一区二区三区|