.引言
本文的寫作目的并不在于提供C/C++程序員求職面試指導,而旨在從技術上分析面試題的內涵。文中的大多數面試題來自各大論壇,部分試題解答也參考了網友的意見。
許多面試題看似簡單,卻需要深厚的基本功才能給出完美的解答。企業要求面試者寫一個最簡單的strcpy函數都可看出面試者在技術上究竟達到了怎樣的程度,我們能真正寫好一個strcpy函數嗎?我們都覺得自己能,可是我們寫出的strcpy很可能只能拿到10分中的2分。讀者可從本文看到strcpy 函數從2分到10分解答的例子,看看自己屬于什么樣的層次。此外,還有一些面試題考查面試者敏捷的思維能力。
分析這些面試題,本身包含很強的趣味性;而作為一名研發人員,通過對這些面試題的深入剖析則可進一步增強自身的內功。
2.找錯題
試題1:
void test1() { char string[10]; char* str1 = "0123456789"; strcpy( string, str1 ); } |
試題2:
void test2() { char string[10], str1[10]; int i; for(i=0; i<10; i++) { str1[i] = 'a'; } strcpy( string, str1 ); } |
試題3:
void test3(char* str1) { char string[10]; if( strlen( str1 ) <= 10 ) { strcpy( string, str1 ); } } |
解答:
試題1字符串str1需要11個字節才能存放下(包括末尾的’\0’),而string只有10個字節的空間,strcpy會導致數組越界;
對試題2,如果面試者指出字符數組str1不能在數組內結束可以給3分;如果面試者指出strcpy(string, str1)調用使得從str1內存起復制到string內存起所復制的字節數具有不確定性可以給7分,在此基礎上指出庫函數strcpy工作方式的給10 分;
對試題3,if(strlen(str1) <= 10)應改為if(strlen(str1) < 10),因為strlen的結果未統計’\0’所占用的1個字節。
剖析:
考查對基本功的掌握:
(1)字符串以’\0’結尾;
(2)對數組越界把握的敏感度;
(3)庫函數strcpy的工作方式,如果編寫一個標準strcpy函數的總分值為10,下面給出幾個不同得分的答案:
2分
void strcpy( char *strDest, char *strSrc ) { while( (*strDest++ = * strSrc++) != ‘\0’ ); } |
4分
void strcpy( char *strDest, const char *strSrc ) //將源字符串加const,表明其為輸入參數,加2分 { while( (*strDest++ = * strSrc++) != ‘\0’ ); } |
7分
void strcpy(char *strDest, const char *strSrc) { //對源地址和目的地址加非0斷言,加3分 assert( (strDest != NULL) && (strSrc != NULL) ); while( (*strDest++ = * strSrc++) != ‘\0’ ); } |
10分
//為了實現鏈式操作,將目的地址返回,加3分!
char * strcpy( char *strDest, const char *strSrc ) { assert( (strDest != NULL) && (strSrc != NULL) ); char *address = strDest; while( (*strDest++ = * strSrc++) != ‘\0’ ); return address; } |
從2分到10分的幾個答案我們可以清楚的看到,小小的strcpy竟然暗藏著這么多玄機,真不是蓋的!需要多么扎實的基本功才能寫一個完美的strcpy?。?br />
(4)對strlen的掌握,它沒有包括字符串末尾的'\0'。
讀者看了不同分值的strcpy版本,應該也可以寫出一個10分的strlen函數了,完美的版本為: int strlen( const char *str ) //輸入參數const
{ assert( strt != NULL ); //斷言字符串地址非0 int len; while( (*str++) != '\0' ) { len++; } return len; } |
試題4:
void GetMemory( char *p ) { p = (char *) malloc( 100 ); }
void Test( void ) { char *str = NULL; GetMemory( str ); strcpy( str, "hello world" ); printf( str ); } |
試題5:
char *GetMemory( void ) { char p[] = "hello world"; return p; }
void Test( void ) { char *str = NULL; str = GetMemory(); printf( str ); } |
試題6:
void GetMemory( char **p, int num ) { *p = (char *) malloc( num ); }
void Test( void ) { char *str = NULL; GetMemory( &str, 100 ); strcpy( str, "hello" ); printf( str ); } |
試題7:
void Test( void ) { char *str = (char *) malloc( 100 ); strcpy( str, "hello" ); free( str ); ... //省略的其它語句 } |
解答:
試題4傳入中GetMemory( char *p )函數的形參為字符串指針,在函數內部修改形參并不能真正的改變傳入形參的值,執行完
char *str = NULL; GetMemory( str ); |
后的str仍然為NULL;
試題5中
char p[] = "hello world"; return p; |
的p[]數組為函數內的局部自動變量,在函數返回后,內存已經被釋放。這是許多程序員常犯的錯誤,其根源在于不理解變量的生存期。
試題6的GetMemory避免了試題4的問題,傳入GetMemory的參數為字符串指針的指針,但是在GetMemory中執行申請內存及賦值語句
*p = (char *) malloc( num ); |
后未判斷內存是否申請成功,應加上:
if ( *p == NULL ) { ...//進行申請內存失敗處理 } |
試題7存在與試題6同樣的問題,在執行
char *str = (char *) malloc(100); |
后未進行內存是否申請成功的判斷;另外,在free(str)后未置str為空,導致可能變成一個“野”指針,應加上:
試題6的Test函數中也未對malloc的內存進行釋放。
剖析:
試題4~7考查面試者對內存操作的理解程度,基本功扎實的面試者一般都能正確的回答其中50~60的錯誤。但是要完全解答正確,卻也絕非易事。
對內存操作的考查主要集中在:
?。?)指針的理解;
?。?)變量的生存期及作用范圍;
?。?)良好的動態內存申請和釋放習慣。
再看看下面的一段程序有什么錯誤:
swap( int* p1,int* p2 ) { int *p; *p = *p1; *p1 = *p2; *p2 = *p; } |
在swap函數中,p是一個“野”指針,有可能指向系統區,導致程序運行的崩潰。在VC++中DEBUG運行時提示錯誤“Access Violation”。該程序應該改為:
swap( int* p1,int* p2 ) { int p; p = *p1; *p1 = *p2; *p2 = p; } |
3.內功題
試題1:分別給出BOOL,int,float,指針變量 與“零值”比較的 if 語句(假設變量名為var)
解答:
BOOL型變量:if(!var)
int型變量: if(var==0)
float型變量:
const float EPSINON = 0.00001;
if ((x >= - EPSINON) && (x <= EPSINON)
指針變量: if(var==NULL)
剖析:
考查對0值判斷的“內功”,BOOL型變量的0判斷完全可以寫成if(var==0),而int型變量也可以寫成if(!var),指針變量的判斷也可以寫成if(!var),上述寫法雖然程序都能正確運行,但是未能清晰地表達程序的意思。
const關鍵字至少有下列n個作用:
(1)欲阻止一個變量被改變,可以使用const關鍵字。在定義該const變量時,通常需要對它進行初始化,因為以后就沒有機會再去改變它了;
?。?)對指針來說,可以指定指針本身為const,也可以指定指針所指的數據為const,或二者同時指定為const;
?。?)在一個函數聲明中,const可以修飾形參,表明它是一個輸入參數,在函數內部不能改變其值;
?。?)對于類的成員函數,若指定其為const類型,則表明其是一個常函數,不能修改類的成員變量;
?。?)對于類的成員函數,有時候必須指定其返回值為const類型,以使得其返回值不為“左值”。例如:
const classA operator*(const classA& a1,const classA& a2); |
operator*的返回結果必須是一個const對象。如果不是,這樣的變態代碼也不會編譯出錯:
classA a, b, c; (a * b) = c; // 對a*b的結果賦值 |
操作(a * b) = c顯然不符合編程者的初衷,也沒有任何意義。
剖析:
驚訝嗎?小小的static和const居然有這么多功能,我們能回答幾個?如果只能回答1~2個,那還真得閉關再好好修煉修煉。
這個題可以考查面試者對程序設計知識的掌握程度是初級、中級還是比較深入,沒有一定的知識廣度和深度,不可能對這個問題給出全面的解答。大多數人只能回答出static和const關鍵字的部分功能。
4.技巧題
試題1:請寫一個C函數,若處理器是Big_endian的,則返回0;若是Little_endian的,則返回1
解答:
int checkCPU() { { union w { int a; char b; } c; c.a = 1; return (c.b == 1); } } |
剖析:
嵌入式系統開發者應該對Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU對操作數的存放方式是從低字節到高字節,而Big-endian模式對操作數的存放方式是從高字節到低字節。例如,16bit寬的數0x1234在Little- endian模式CPU內存中的存放方式(假設從地址0x4000開始存放)為:
內存地址 | 存放內容 |
0x4000 | 0x34 |
0x4001 | 0x12 |
而在Big-endian模式CPU內存中的存放方式則為:
內存地址 | 存放內容 |
0x4000 | 0x12 |
0x4001 | 0x34 |
32bit寬的數0x12345678在Little-endian模式CPU內存中的存放方式(假設從地址0x4000開始存放)為:
內存地址 | 存放內容 |
0x4000 | 0x78 |
0x4001 | 0x56 |
0x4002 | 0x34 |
0x4003 | 0x12 |
而在Big-endian模式CPU內存中的存放方式則為:
內存地址 | 存放內容 |
0x4000 | 0x12 |
0x4001 | 0x34 |
0x4002 | 0x56 |
0x4003 | 0x78 |
聯合體union的存放順序是所有成員都從低地址開始存放,面試者的解答利用該特性,輕松地獲得了CPU對內存采用Little-endian還是Big-endian模式讀寫。如果誰能當場給出這個解答,那簡直就是一個天才的程序員。
試題2:寫一個函數返回1+2+3+…+n的值(假定結果不會超過長整型變量的范圍)
解答:
int Sum( int n ) { return ( (long)1 + n) * n / 2; //或return (1l + n) * n / 2; } |
剖析:
對于這個題,只能說,也許最簡單的答案就是最好的答案。下面的解答,或者基于下面的解答思路去優化,不管怎么“折騰”,其效率也不可能與直接return ( 1 l + n ) * n / 2相比!
int Sum( int n ) { long sum = 0; for( int i=1; i<=n; i++ ) { sum += i; } return sum; } |
所以程序員們需要敏感地將數學等知識用在程序設計中。