<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    posts - 97,  comments - 93,  trackbacks - 0
    Problem Statement

    Let's say you have a binary string such as the following:
    011100011
    One way to encrypt this string is to add to each digit the sum of its adjacent digits. For example, the above string would become:
    123210122
    In particular, if P is the original string, and Q is the encrypted string, then Q[i] = P[i-1] + P[i] + P[i+1] for all digit positions i. Characters off the left and right edges of the string are treated as zeroes.
    An encrypted string given to you in this format can be decoded as follows (using 123210122 as an example):
    Assume P[0] = 0.
    Because Q[0] = P[0] + P[1] = 0 + P[1] = 1, we know that P[1] = 1.
    Because Q[1] = P[0] + P[1] + P[2] = 0 + 1 + P[2] = 2, we know that P[2] = 1.
    Because Q[2] = P[1] + P[2] + P[3] = 1 + 1 + P[3] = 3, we know that P[3] = 1.
    Repeating these steps gives us P[4] = 0, P[5] = 0, P[6] = 0, P[7] = 1, and P[8] = 1.
    We check our work by noting that Q[8] = P[7] + P[8] = 1 + 1 = 2. Since this equation works out, we are finished, and we have recovered one possible original string.
    Now we repeat the process, assuming the opposite about P[0]:
    Assume P[0] = 1.
    Because Q[0] = P[0] + P[1] = 1 + P[1] = 0, we know that P[1] = 0.
    Because Q[1] = P[0] + P[1] + P[2] = 1 + 0 + P[2] = 2, we know that P[2] = 1.
    Now note that Q[2] = P[1] + P[2] + P[3] = 0 + 1 + P[3] = 3, which leads us to the conclusion that P[3] = 2. However, this violates the fact that each character in the original string must be '0' or '1'. Therefore, there exists no such original string P where the first digit is '1'.
    Note that this algorithm produces at most two decodings for any given encrypted string. There can never be more than one possible way to decode a string once the first binary digit is set.
    Given a String message, containing the encrypted string, return a String[] with exactly two elements. The first element should contain the decrypted string assuming the first character is '0'; the second element should assume the first character is '1'. If one of the tests fails, return the string "NONE" in its place. For the above example, you should return {"011100011", "NONE"}.
    Definition

    Class:
    BinaryCode
    Method:
    decode
    Parameters:
    String
    Returns:
    String[]
    Method signature:
    String[] decode(String message)
    (be sure your method is public)


    Constraints
    -
    message will contain between 1 and 50 characters, inclusive.
    -
    Each character in message will be either '0', '1', '2', or '3'.
    Examples
    0)

    "123210122"
    Returns: { "011100011",  "NONE" }
    The example from above.
    1)

    "11"
    Returns: { "01",  "10" }
    We know that one of the digits must be '1', and the other must be '0'. We return both cases.
    2)

    "22111"
    Returns: { "NONE",  "11001" }
    Since the first digit of the encrypted string is '2', the first two digits of the original string must be '1'. Our test fails when we try to assume that P[0] = 0.
    3)

    "123210120"
    Returns: { "NONE",  "NONE" }
    This is the same as the first example, but the rightmost digit has been changed to something inconsistent with the rest of the original string. No solutions are possible.
    4)

    "3"
    Returns: { "NONE",  "NONE" }

    5)

    "12221112222221112221111111112221111"
    Returns:
    { "01101001101101001101001001001101001",
      "10110010110110010110010010010110010" }

    This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
     1 /**
     2  *
     3  * @author Nicky Qu
     4  * All Rights Reserved. Oct.23th,2007.
     5  */
     6 public class BinaryCode {
     7 
     8     private char[] temp;
     9     private String originalCode0="00";
    10     private String originalCode1="01";
    11 
    12     public String[] decode(String message) {
    13         temp = message.toCharArray();
    14          originalCode0 = Run(temp,originalCode0);
    15          originalCode1 = Run(temp,originalCode1);
    16         return new String[]{originalCode0,originalCode1};
    17     }
    18 
    19     private String Run(char[] temp,String deEncryptedCode) {
    20         int p_i = 0,p_i_1 = 0;
    21         int p_i_add_1 = 0;
    22       for(int i =0;i<temp.length;i++){
    23           p_i_1 =  Character.getNumericValue(deEncryptedCode.charAt(i));
    24           p_i =  Character.getNumericValue(deEncryptedCode.charAt(i+1));
    25           p_i_add_1 =Character.getNumericValue(temp[i]) - p_i - p_i_1;
    26           boolean just = (i==temp.length-1&& (p_i_add_1 != 0);
    27           if(p_i_add_1 < 0||p_i_add_1>2||just){
    28               return "NONE";
    29           }              
    30           deEncryptedCode = deEncryptedCode+ p_i_add_1;          
    31       }
    32         return deEncryptedCode.substring(1,deEncryptedCode.length()-1);
    33     }
    34 }

    posted on 2007-10-23 13:34 wqwqwqwqwq 閱讀(1055) 評(píng)論(1)  編輯  收藏 所屬分類: Data Structure && Algorithm

    FeedBack:
    # re: A Q of Encrypting String
    2007-10-23 19:57 | 曲強(qiáng) Nicky
    public class BinaryCode {

    private String[] result;
    private int[] q;
    private int[] p;

    public String[] decode(String message) {
    result = new String[]{"", ""};
    q = new int[message.length()];
    for (int i = 0; i < q.length; i++) {
    q[i] = Integer.parseInt(String.valueOf(message.charAt(i)));
    }
    for (int j = 0; j < 2; j++) {
    p = new int[q.length];
    p[0] = j;
    result[j] += p[0];
    for (int i = 1; i < q.length; i++) {
    if (i == 1) {
    p[1] = q[0] - p[0];
    } else {
    p[i] = q[i - 1] - p[i - 2] - p[i - 1];
    }
    if (p[i] > 1 || p[i] < 0) {
    result[j] = "NONE";
    break;
    }
    result[j] += p[i];
    }
    for (int i = 0; i < p.length; i++) {
    if (i == 0 && i == p.length - 1) {
    if (p[i] != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else if (i == 0) {
    if (0 + p[i] + p[i + 1] != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else if (i == p.length - 1) {
    if (p[i - 1] + p[i] + 0 != q[i]) {
    result[j] = "NONE";
    break;
    }
    } else {
    if (p[i - 1] + p[i] + p[i + 1] != q[i]) {
    result[j] = "NONE";
    break;
    }
    }
    }
    }
    return result;
    }
    }  回復(fù)  更多評(píng)論
      
    <2007年10月>
    30123456
    78910111213
    14151617181920
    21222324252627
    28293031123
    45678910




    常用鏈接

    留言簿(10)

    隨筆分類(95)

    隨筆檔案(97)

    文章檔案(10)

    相冊(cè)

    J2ME技術(shù)網(wǎng)站

    java技術(shù)相關(guān)

    mess

    搜索

    •  

    最新評(píng)論

    閱讀排行榜

    校園夢(mèng)網(wǎng)網(wǎng)絡(luò)電話,中國(guó)最優(yōu)秀的網(wǎng)絡(luò)電話
    主站蜘蛛池模板: 久久国产精品免费视频| 欧洲精品码一区二区三区免费看 | 国产精品亚洲а∨无码播放不卡 | 无遮挡国产高潮视频免费观看| 日本牲交大片免费观看| 亚洲日韩乱码中文字幕| 成年人在线免费看视频| 亚洲AV色无码乱码在线观看| 午夜时刻免费入口| 国产偷国产偷亚洲高清在线| 国产免费牲交视频| 一级做a爱过程免费视频高清| 亚洲一区二区三区在线视频| 中文字幕视频在线免费观看| 亚洲国产成人久久综合碰碰动漫3d| 亚欧免费一级毛片| 亚洲国产成人精品无码区在线秒播| 成人免费午夜在线观看| 久久久久久亚洲av无码蜜芽| 亚洲久悠悠色悠在线播放| 蜜桃精品免费久久久久影院| 人人爽人人爽人人片A免费| 国产精品亚洲A∨天堂不卡| 久久久久久精品成人免费图片 | 美女被爆羞羞网站在免费观看| 四虎影视在线永久免费观看| 成人免费ā片在线观看| 亚洲综合无码一区二区三区| 夜夜嘿视频免费看| 中文字字幕在线高清免费电影| 中文字幕亚洲色图| 全亚洲最新黄色特级网站 | 嘿嘿嘿视频免费网站在线观看| 亚洲欧洲日产国码久在线| 亚洲国产电影av在线网址| 久久久久成人精品免费播放动漫| 亚洲一区二区三区播放在线| 成人亚洲网站www在线观看| 无码av免费一区二区三区| 亚洲欧洲日产国码久在线| 亚洲成AV人在线播放无码|