同一問題可用不同算法解決,而一個算法的質量優劣將影響到算法乃至程序的效率。算法分析的目的在于選擇合適算法和改進算法。
算法復雜度分為
時間復雜度和
空間復雜度。其作用: 時間復雜度是度量算法執行的時間長短;而空間復雜度是度量算法所需存儲空間的大小。
1.時間頻度
一個算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個算法都上機測試,只需知道哪個算法花費的時間多,哪個算法花費的時間少就可以了。并且一個算法花費的時間與算法中語句的執行次數
成正比例,哪個算法中語句執行次數多,它花費時間就多。一個算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.計算方法
1. 一般情況下,算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,算法的時間復雜度記做:T(n)=O(f(n)) 分析:隨著模塊n的增大,算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,算法的時間復雜度越低,算法的效率越高。 2. 在計算時間復雜度的時候,先找出算法的基本操作,然后根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度 T(n)=O(f(n)) 例:算法: for(i=1;i<=n;++i) { for(j=1;j<=n;++j) { c[ i ][ j ]=0; //該步驟屬于基本操作 執行次數:n的平方 次 for(k=1;k<=n;++k) c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬于基本操作 執行次數:n的三次方 次 } } 則有 T(n)= n的平方+n的三次方,根據上面括號里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級 則有f(n)= n的三次方,然后根據T(n)/f(n)求極限可得到常數c 則該算法的 時間復雜度:T(n)=O(n^3) 注:n^3即是n的3次方。
3.分類
按數量級遞增排列,常見的時間復雜度有: 常數階O(1),對數階O(log2n),線性階O(n), 線性對數階O(nlog2n),平方階O(n^2),立方階O(n^3),..., k次方階O(n^k), 指數階O(2n) 。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,算法的執行效率越低。
一個程序的空間復雜度是指運行完一個程序所需內存的大小。利用程序的空間復雜度,可以對程序的運行所需要的內存多少有個預先估計。一個程序執行時除了需 要存儲空間和存儲本身所使用的指令、常數、變量和輸入數據外,還需要一些對數據進行操作的工作單元和存儲一些為現實計算所需信息的輔助空間。程序執行時所 需存儲空間包括以下兩部分。 (1)固定部分。這部分空間的大小與輸入/輸出的數據的個數多少、數值無關。主要包括指令空間(即代碼空間)、數據空間(常量、簡單變量)等所占的空間。這部分屬于靜態空間。 (2)可變空間,這部分空間的主要包括動態分配的空間,以及遞歸棧所需的空間等。這部分的空間大小與算法有關。 一個算法所需的存儲空間用f(n)表示。 S(n)=O(f(n)) 其中n為問題的規模,S(n)表示空間復雜度。