1 #include<stdio.h>
2 #include<iostream>
3 #include<cmath>
4 #include<iomanip>
5 #include<set>
6 using namespace std;
7 void sieve(set<int>& s,int n)
8 {
9 int m,i;
10 s.erase(s.begin (),s.end ());//一定要清空
11 for(i=2;i<n;i++)
12 s.insert (i);
13 int t=sqrt(n);
14 for(m=2;m<=t;m++)
15 {
16 if(s.find (m)!=s.end())
17 {
18 i=2*m;
19 while(i<=n)
20 {
21 s.erase (i);
22 i+=m;
23 }
24 }
25 }
26 }
27 int main()
28 {
29 set<int> primeSet;
30 int n;
31 int ccount=0;
32 while(1)
33 {
34 cin>>n;
35 ccount=0;
36 sieve(primeSet,n);
37 set<int>::iterator iter;
38 iter=primeSet.begin ();
39 while(iter!=primeSet.end ())
40 {
41 ccount++;
42
43 cout<<*iter<<" ";
44 iter++;
45 if(ccount%10==0)
46 cout<<endl;
47 }
48 cout<<endl<<ccount <<endl;
49 }
50 return 0;
51 }
素?cái)?shù)篩法是這樣的:
1.開一個(gè)大的bool型數(shù)組prime[],大小就是n+1就可以了.先把所有的下標(biāo)為奇數(shù)的標(biāo)為true,下標(biāo)為偶數(shù)的標(biāo)為false.
2.然后:
for( i=3; i<=sqrt(n); i+=2 )
{ if(prime[i])
for( j=i+i; j<=n; j+=i ) prime[j]=false;
}
3.最后輸出bool數(shù)組中的值為true的單元的下標(biāo),就是所求的n以內(nèi)的素?cái)?shù)了。
原理很簡(jiǎn)單,就是當(dāng)i是質(zhì)(素)數(shù)的時(shí)候,i的所有的倍數(shù)必然是合數(shù)。如果i已經(jīng)被判斷不是質(zhì)數(shù)了,那么再找到i后面的質(zhì)數(shù)來(lái)把這個(gè)質(zhì)
數(shù)的倍數(shù)篩掉。
一個(gè)簡(jiǎn)單的
篩素?cái)?shù)的過程:n=30。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
第 1 步過后2 4 ... 28 30這15個(gè)單元被標(biāo)成false,其余為true。
第 2 步開始:
i=3; 由于prime[3]=true, 把prime[6], [9], [12], [15], [18], [21], [24], [27], [30]標(biāo)為false.
i=4; 由于prime[4]=false,不在繼續(xù)篩法步驟。
i=5; 由于prime[5]=true, 把prime[10],[15],[20],[25],[30]標(biāo)為false.
i=6>sqrt(30)算法結(jié)束。
第 3 步把prime[]值為true的下標(biāo)輸出來(lái):
for(i=2; i<=30; i++)
if(prime[i]) printf("%d ",i);
結(jié)果是 2 3 5 7 11 13 17 19 23 29