<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    人在江湖

      BlogJava :: 首頁 :: 聯系 :: 聚合  :: 管理
      82 Posts :: 10 Stories :: 169 Comments :: 0 Trackbacks

    Kendall tau是用來度量關聯關系的。

    (引自wikipedia:http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient)

    ==============================================

    Let (x1, y1), (x2, y2), …, (xn, yn) be a set of joint observations from two random variables X and Y respectively, such that all the values of (xi) and (yi) are unique. Any pair of observations (xi, yi) and (xj, yj) are said to be concordant if the ranks for both elements agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. They are said to be discordant, if xi > xj and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor discordant.

    The Kendall τ coefficient is defined as:

    \tau = \frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{\frac{1}{2} n (n-1) } .

    =========================================================

    同一篇文章繼續引用關于ties:

    =========================================================

    A pair {(xi, yi), (xj, yj)} is said to be tied if xi = xj or yi = yj; a tied pair is neither concordant nor discordant. When tied pairs arise in the data, the coefficient may be modified in a number of ways to keep it in the range [-1, 1]:

    Tau-b statistic, unlike tau-a, makes adjustments for ties and is suitable for square tables. Values of tau-b range from ?1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.

    The Kendall tau-b coefficient is defined as:

    \tau_B = \frac{n_c-n_d}{\sqrt{(n_0-n_1)(n_0-n_2)}}

    where

    \begin{array}{ccl}
n_0 & = & n(n-1)/2\\
n_1 & = & \sum_i t_i (t_i-1)/2 \\
n_2 & = & \sum_j u_j (u_j-1)/2 \\
t_i & = & \mbox{Number of tied values in the } i^{th} \mbox{ group of ties for the first quantity} \\
u_j & = & \mbox{Number of tied values in the } j^{th} \mbox{ group of ties for the second quantity}
\end{array}

    ================================================

    靠,搞了半天才理解,上面公式中所謂nc, nd里面的c和d,指的是concordant和discordant.

    在sas中計算Kendall tau-2比較簡單,直接用proc freq就行,原來proc freq如此強大啊。

    sas程序舉例:

    data color;
       input Region Eyes $ Hair $ Count @@;
       label Eyes  ='Eye Color'
             Hair  ='Hair Color'
             Region='Geographic Region';
       datalines;
    1 blue  fair   23  1 blue  red     7  1 blue  medium 24
    1 blue  dark   11  1 green fair   19  1 green red     7
    1 green medium 18  1 green dark   14  1 brown fair   34
    1 brown red     5  1 brown medium 41  1 brown dark   40
    1 brown black   3  2 blue  fair   46  2 blue  red    21
    2 blue  medium 44  2 blue  dark   40  2 blue  black   6
    2 green fair   50  2 green red    31  2 green medium 37
    2 green dark   23  2 brown fair   56  2 brown red    42
    2 brown medium 53  2 brown dark   54  2 brown black  13
    ;

    proc freq data = color noprint ;                                                                                             
    tables  eyes*hair / measures  noprint ;                                                                                   
    weight count;                                                                                                     
    output out=output KENTB;                                                                                          
    test KENTB;                                                                                                            
    run;

     

    另外跟Kendall tau有點兒關聯的是Somer’s D,但是搜索了一下沒看到公式,反正Somer’s D也可以用sas proc freq直接算,方法類似。

    Somers' D(C|R) and Somers' D(R|C) are asymmetric modifications of tau-b.Somers' D differs from tau-b in that it uses a correction only for pairs that are tied on the independent variable.

    posted on 2011-08-28 15:11 人在江湖 閱讀(837) 評論(0)  編輯  收藏 所屬分類: BI
    主站蜘蛛池模板: 1000部拍拍拍18勿入免费视频下载 | 色偷偷噜噜噜亚洲男人| 国产成人精品免费视频大| 亚洲免费视频在线观看| 99精品视频免费在线观看| 亚洲高清视频免费| 无码国产精品一区二区免费式影视| 亚洲成a人片在线观看中文app| 91精品免费在线观看| 亚洲精品天堂在线观看| 精品国产一区二区三区免费看| 亚洲精品无码久久久久久| 国产一级特黄高清免费大片| 国产高清对白在线观看免费91 | 亚洲AV无码AV男人的天堂| 日韩av无码久久精品免费| 亚洲一区二区三区在线观看蜜桃| 免费无码AV电影在线观看| 亚洲AV噜噜一区二区三区| 亚洲无线码在线一区观看| 无码一区二区三区免费| 在线综合亚洲欧洲综合网站| 一本色道久久88综合亚洲精品高清| 一个人免费观看日本www视频| 亚洲AV永久无码精品| 和日本免费不卡在线v| 免费手机在线看片| 久久亚洲精品成人| 女人18毛片水真多免费看| 一本到卡二卡三卡免费高| 久久亚洲国产成人精品性色| 免费高清av一区二区三区| A毛片毛片看免费| 中文字幕亚洲精品无码| 亚洲综合图色40p| a毛片基地免费全部视频| 一级美国片免费看| 亚洲av无码片区一区二区三区| 亚洲国产精品无码久久久久久曰 | 亚洲av成人一区二区三区在线观看| a毛片久久免费观看|