<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    人在江湖

      BlogJava :: 首頁 :: 聯(lián)系 :: 聚合  :: 管理
      82 Posts :: 10 Stories :: 169 Comments :: 0 Trackbacks

    Kendall tau是用來度量關(guān)聯(lián)關(guān)系的。

    (引自wikipedia:http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient)

    ==============================================

    Let (x1, y1), (x2, y2), …, (xn, yn) be a set of joint observations from two random variables X and Y respectively, such that all the values of (xi) and (yi) are unique. Any pair of observations (xi, yi) and (xj, yj) are said to be concordant if the ranks for both elements agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. They are said to be discordant, if xi > xj and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor discordant.

    The Kendall τ coefficient is defined as:

    \tau = \frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{\frac{1}{2} n (n-1) } .

    =========================================================

    同一篇文章繼續(xù)引用關(guān)于ties:

    =========================================================

    A pair {(xi, yi), (xj, yj)} is said to be tied if xi = xj or yi = yj; a tied pair is neither concordant nor discordant. When tied pairs arise in the data, the coefficient may be modified in a number of ways to keep it in the range [-1, 1]:

    Tau-b statistic, unlike tau-a, makes adjustments for ties and is suitable for square tables. Values of tau-b range from ?1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.

    The Kendall tau-b coefficient is defined as:

    \tau_B = \frac{n_c-n_d}{\sqrt{(n_0-n_1)(n_0-n_2)}}

    where

    \begin{array}{ccl}
n_0 & = & n(n-1)/2\\
n_1 & = & \sum_i t_i (t_i-1)/2 \\
n_2 & = & \sum_j u_j (u_j-1)/2 \\
t_i & = & \mbox{Number of tied values in the } i^{th} \mbox{ group of ties for the first quantity} \\
u_j & = & \mbox{Number of tied values in the } j^{th} \mbox{ group of ties for the second quantity}
\end{array}

    ================================================

    靠,搞了半天才理解,上面公式中所謂nc, nd里面的c和d,指的是concordant和discordant.

    在sas中計算Kendall tau-2比較簡單,直接用proc freq就行,原來proc freq如此強大啊。

    sas程序舉例:

    data color;
       input Region Eyes $ Hair $ Count @@;
       label Eyes  ='Eye Color'
             Hair  ='Hair Color'
             Region='Geographic Region';
       datalines;
    1 blue  fair   23  1 blue  red     7  1 blue  medium 24
    1 blue  dark   11  1 green fair   19  1 green red     7
    1 green medium 18  1 green dark   14  1 brown fair   34
    1 brown red     5  1 brown medium 41  1 brown dark   40
    1 brown black   3  2 blue  fair   46  2 blue  red    21
    2 blue  medium 44  2 blue  dark   40  2 blue  black   6
    2 green fair   50  2 green red    31  2 green medium 37
    2 green dark   23  2 brown fair   56  2 brown red    42
    2 brown medium 53  2 brown dark   54  2 brown black  13
    ;

    proc freq data = color noprint ;                                                                                             
    tables  eyes*hair / measures  noprint ;                                                                                   
    weight count;                                                                                                     
    output out=output KENTB;                                                                                          
    test KENTB;                                                                                                            
    run;

     

    另外跟Kendall tau有點兒關(guān)聯(lián)的是Somer’s D,但是搜索了一下沒看到公式,反正Somer’s D也可以用sas proc freq直接算,方法類似。

    Somers' D(C|R) and Somers' D(R|C) are asymmetric modifications of tau-b.Somers' D differs from tau-b in that it uses a correction only for pairs that are tied on the independent variable.

    posted on 2011-08-28 15:11 人在江湖 閱讀(843) 評論(0)  編輯  收藏 所屬分類: BI
    主站蜘蛛池模板: 24小时日本韩国高清免费| 亚洲人成自拍网站在线观看| 国产av无码专区亚洲av果冻传媒| 日韩成人免费视频播放| 免费无码AV电影在线观看| 黄色网址免费大全| 国产91色综合久久免费| 最好看最新的中文字幕免费| 最近中文字幕mv免费高清在线 | 亚洲综合色区在线观看| 亚洲 无码 在线 专区| 亚洲AⅤ永久无码精品AA| 免费日韩在线视频| 免费看国产一级特黄aa大片| 伊在人亚洲香蕉精品区麻豆| 亚洲人AV永久一区二区三区久久| 久久久久亚洲AV综合波多野结衣| 亚洲综合国产一区二区三区| 亚洲国产三级在线观看| 亚洲人成在线影院| 亚洲成a人片毛片在线| 亚洲娇小性色xxxx| 亚洲人av高清无码| 四虎一区二区成人免费影院网址 | 亚洲变态另类一区二区三区| 大桥未久亚洲无av码在线| 免费一区二区三区在线视频| A毛片毛片看免费| 99精品免费观看| 99re热免费精品视频观看| 日韩精品视频免费观看| 免费一级一片一毛片| 亚洲国产成人片在线观看无码 | 亚洲卡一卡2卡三卡4卡无卡三| 亚洲狠狠狠一区二区三区| 亚洲色最新高清av网站| 一级视频在线免费观看| 久久久免费的精品| 四虎影院免费视频| 久久久无码精品亚洲日韩软件 | 全亚洲最新黄色特级网站|