<rt id="bn8ez"></rt>
<label id="bn8ez"></label>

  • <span id="bn8ez"></span>

    <label id="bn8ez"><meter id="bn8ez"></meter></label>

    人在江湖

      BlogJava :: 首頁 :: 聯(lián)系 :: 聚合  :: 管理
      82 Posts :: 10 Stories :: 169 Comments :: 0 Trackbacks

    Kendall tau是用來度量關(guān)聯(lián)關(guān)系的。

    (引自wikipedia:http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient)

    ==============================================

    Let (x1, y1), (x2, y2), …, (xn, yn) be a set of joint observations from two random variables X and Y respectively, such that all the values of (xi) and (yi) are unique. Any pair of observations (xi, yi) and (xj, yj) are said to be concordant if the ranks for both elements agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. They are said to be discordant, if xi > xj and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor discordant.

    The Kendall τ coefficient is defined as:

    \tau = \frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{\frac{1}{2} n (n-1) } .

    =========================================================

    同一篇文章繼續(xù)引用關(guān)于ties:

    =========================================================

    A pair {(xi, yi), (xj, yj)} is said to be tied if xi = xj or yi = yj; a tied pair is neither concordant nor discordant. When tied pairs arise in the data, the coefficient may be modified in a number of ways to keep it in the range [-1, 1]:

    Tau-b statistic, unlike tau-a, makes adjustments for ties and is suitable for square tables. Values of tau-b range from ?1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.

    The Kendall tau-b coefficient is defined as:

    \tau_B = \frac{n_c-n_d}{\sqrt{(n_0-n_1)(n_0-n_2)}}

    where

    \begin{array}{ccl}
n_0 & = & n(n-1)/2\\
n_1 & = & \sum_i t_i (t_i-1)/2 \\
n_2 & = & \sum_j u_j (u_j-1)/2 \\
t_i & = & \mbox{Number of tied values in the } i^{th} \mbox{ group of ties for the first quantity} \\
u_j & = & \mbox{Number of tied values in the } j^{th} \mbox{ group of ties for the second quantity}
\end{array}

    ================================================

    靠,搞了半天才理解,上面公式中所謂nc, nd里面的c和d,指的是concordant和discordant.

    在sas中計算Kendall tau-2比較簡單,直接用proc freq就行,原來proc freq如此強(qiáng)大啊。

    sas程序舉例:

    data color;
       input Region Eyes $ Hair $ Count @@;
       label Eyes  ='Eye Color'
             Hair  ='Hair Color'
             Region='Geographic Region';
       datalines;
    1 blue  fair   23  1 blue  red     7  1 blue  medium 24
    1 blue  dark   11  1 green fair   19  1 green red     7
    1 green medium 18  1 green dark   14  1 brown fair   34
    1 brown red     5  1 brown medium 41  1 brown dark   40
    1 brown black   3  2 blue  fair   46  2 blue  red    21
    2 blue  medium 44  2 blue  dark   40  2 blue  black   6
    2 green fair   50  2 green red    31  2 green medium 37
    2 green dark   23  2 brown fair   56  2 brown red    42
    2 brown medium 53  2 brown dark   54  2 brown black  13
    ;

    proc freq data = color noprint ;                                                                                             
    tables  eyes*hair / measures  noprint ;                                                                                   
    weight count;                                                                                                     
    output out=output KENTB;                                                                                          
    test KENTB;                                                                                                            
    run;

     

    另外跟Kendall tau有點兒關(guān)聯(lián)的是Somer’s D,但是搜索了一下沒看到公式,反正Somer’s D也可以用sas proc freq直接算,方法類似。

    Somers' D(C|R) and Somers' D(R|C) are asymmetric modifications of tau-b.Somers' D differs from tau-b in that it uses a correction only for pairs that are tied on the independent variable.

    posted on 2011-08-28 15:11 人在江湖 閱讀(837) 評論(0)  編輯  收藏 所屬分類: BI
    主站蜘蛛池模板: va天堂va亚洲va影视中文字幕| 亚洲人成色777777在线观看| 亚洲最大中文字幕| 最近中文字幕国语免费完整| 亚洲一区二区电影| 亚洲国产精品不卡在线电影| 视频免费在线观看| 亚洲人成网址在线观看| 最近2019免费中文字幕6| 亚洲视频在线不卡| 成年女人A毛片免费视频| 亚洲尤码不卡AV麻豆| 国产免费网站看v片在线| 亚洲电影一区二区三区| 亚洲精品视频免费在线观看| 在线综合亚洲欧洲综合网站| 国产成人精品123区免费视频| 窝窝影视午夜看片免费| 中文字幕日韩亚洲| 免费无遮挡无码永久视频| 亚洲色图综合网站| 在线中文高清资源免费观看| 无码免费又爽又高潮喷水的视频| 亚洲人成网站在线观看播放| 十九岁在线观看免费完整版电影| 亚洲av成人一区二区三区| 国产免费观看黄AV片| 岛国岛国免费V片在线观看| 久久亚洲AV无码精品色午夜 | 亚洲丰满熟女一区二区哦| 亚洲 国产 图片| 福利片免费一区二区三区| 毛片免费全部播放一级| 国产亚洲精品美女久久久久久下载| 亚洲综合色婷婷七月丁香| 天天影院成人免费观看| 深夜特黄a级毛片免费播放| 国产又大又粗又硬又长免费| 久久久久女教师免费一区| 亚洲伊人久久综合影院| 1000部拍拍拍18勿入免费视频软件|